2,121 research outputs found

    Revision of Pycnandra subgenus Sebertia (Sapotaceae) and a generic key to the family in New Caledonia

    Get PDF
    The satellite genus Sebertia (Sapotaceae, Chrysophylloideae) in New Caledonia is here recognized as Pycnandra subgenus Sebertia, a group comprising only two species. Pycnandra canaliculata is described and illustrated as new from the south part of Grande Terre where it occurs in maquis vegetation and humid forest on ultramafic soils, often along watercourses. This species is well known among many biologists but misidentified until now as Sebertia gatopensis, a synonym of P. blanchonii that resides in northwest Grande Terre. In New Caledonia, Pycnandra is the only sapotaceous genus with flowers that lack staminodes and Pycnandra subgenus Sebertia is characterized by small white flowers and fruits lacking stylar remnants. The fruits are characteristic with a scale-like epidermis that is translucent and peels off in P. acuminata versus brown and persistent in P canaliculata. Using field data and applying IUCN criteria, we assess the preliminary threat as Least Concern (LC) for P. acuminata and Vulnerable (VU) for P. canaliculata

    Compte-rendu de mission sur l'île Art, 24-27 août 2009

    Get PDF

    System-size dependence

    Full text link
    The final state in The final state in heavy-ion collisions has a higher degree of strangeness saturation than the one produced in collisions between elementary particles like p-p or p-pˉ\bar{p}. A systematic analysis of this phenomenon is made for C-C, Si-Si and Pb-Pb collisions at the CERN SPS collider and for AuAuAu-Au collisions at RHIC and at AGS energies. Strangeness saturation is shown to increase smoothly with the number of participants at AGS, CERN and RHIC energies.Comment: 5 pages, 5 figures, presented at SQM2003 conferenc

    Strange particle production at RHIC in a single-freeze-out model

    Get PDF
    Strange particle ratios and pT-spectra are calculated in a thermal model with single freeze-out, previously used successfully to describe non-strange particle production at RHIC. The model and the recently released data for phi, Lambda, anti-Lambda, and K*(892) are in very satisfactory agreement, showing that the thermal approach can be used to describe the strangeness production at RHIC.Comment: We have added the comparison of the model predictions to the newly released Lambda and K*(892) pT-spectra from STA

    The PreAmplifier ShAper for the ALICE TPC-Detector

    Full text link
    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18-25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm2^2 and is implemented in AMS's C35B3C1 0.35 micron CMOS technology. Detailed characterization test were performed on about 48000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p-p and Pb-Pb collisions, the PASA has demonstrated to fulfill all requirements

    Aspects of thermal and chemical equilibration of hadronic matter

    Full text link
    We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model that contains resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box with periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than \simeq 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of TsT_s\simeq 150 MeV. We, furthermore, study the expansion of a hadronic fireball after equilibration. The slope parameters of the particles after expansion increase with their mass; the pions leave the fireball much faster then nucleons and accelerate subsequently heavier hadrons by rescattering ('pion wind'). If the system before expansion is close to the limiting temperature TsT_s, the slope parameters for all particles after expansion practically do not depend on (initial) energy and baryon density. Finally, the equilibration in relativistic nucleus-nucleus collision is considered. Since the reaction time here is much shorter than the equilibration time for strangeness, a chemical equilibrium of strange particles in heavy-ion collisions is not supported by our transport calculations. However, the various particle spectra can approximately be described within the blast model.Comment: 39 pages, LaTeX, including 18 postscript figures, Nucl. Phys. A, in pres

    Particle Ratios as a Probe of the QCD Critical Temperature

    Full text link
    We show how the measured particle ratios can be used to provide non-trivial information about the critical temperature of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are used to describe hadronic yields. The inclusion of Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, THT_H, which is assumed to be equal to TcT_c, and leads to an overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sNN=200\sqrt{s_{NN}}=200 GeV the best square fit measure, χ2\chi^2, occurs at Tc176T_c \sim 176 MeV and produces a chemical freeze-out temperature of 172.6 MeV and a baryon chemical potential of 39.7 MeV.Comment: 6 pages, 4 figure

    Fluctuations and the QCD phase diagram

    Full text link
    In this contribution the role of quantum fluctuations for the QCD phase diagram is discussed. This concerns in particular the importance of the matter back-reaction to the gluonic sector. The impact of these fluctuations on the location of the confinement/deconfinement and the chiral transition lines as well as their interrelation are investigated. Consequences of our findings for the size of a possible quarkyonic phase and location of a critical endpoint in the phase diagram are drawn.Comment: 7 pages, 3 figures, to appear in Physics of Atomic Nucle

    Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze out

    Full text link
    We investigate the effect of early chemical freeze-out on radial flow, elliptic flow and HBT radii by using a fully three dimensional hydrodynamic model. When we take account of the early chemical freeze-out, the space-time evolution of temperature in the hadron phase is considerably different from the conventional model in which chemical equilibrium is always assumed. As a result, we find that radial and elliptic flows are suppressed and that the lifetime and the spatial size of the fluid are reduced. We analyze the p_t spectrum, the differential elliptic flow, and the HBT radii at the RHIC energy by using hydrodynamics with chemically non-equilibrium equation of state.Comment: One subsection and two figures adde

    Status of Chemical Equilibrium in Relativistic Heavy Ion Collisions

    Full text link
    Recent work on chemical equilibrium in heavy ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.Comment: 7 pages, 7 Postscript figure
    corecore