9,353 research outputs found

    Alternative experimental evidence for chiral restoration in excited baryons

    Full text link
    Given existing empirical spectral patterns of excited hadrons it has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature/density (effective symmetry restoration). If correct, this implies that mass generation mechanisms and physics in excited hadrons is very different as compared to the lowest states. One needs an alternative and independent experimental information to confirm this conjecture. Using very general chiral symmetry arguments it is shown that strict chiral restoration in a given excited nucleon forbids its decay into the N \pi channel. Hence those excited nucleons which are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only "weakly" decay into the N \pi channel, (f_{N^*N\pi}/f_{NN\pi})^2 << 1. However, those baryons which have no chiral partner must decay strongly with a decay constant comparable with f_{NN\pi}. Decay constants can be extracted from the existing decay widths and branching ratios. It turnes out that for all those well established excited nucleons which can be classified into chiral doublets N_+(1440) - N_-(1535), N_+(1710) - N_-(1650), N_+(1720) - N_-(1700), N_+(1680) - N_-(1675), N_+(2220) - N_-(2250), N_+(?) - N_-(2190), N_+(?) - N_-(2600), the ratio is (f_{N^*N\pi}/f_{NN\pi})^2 ~ 0.1 or much smaller for the high-spin states. In contrast, the only well established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the N\pi channel that is comparable with f_{NN\pi}. This gives an independent experimental verification of the chiral symmetry restoration scenario.Comment: 4 pp. A new footnote with an alternative proof of impossibility of parity doublet decay into pi + N is added. To appear in Phys. Rev. Let

    Palatini Variational Principle for NN-Dimensional Dilaton Gravity

    Get PDF
    We consider a Palatini variation on a general NN-Dimensional second order, torsion-free dilaton gravity action and determine the resulting equations of motion. Consistency is checked by considering the restraint imposed due to invariance of the matter action under simple coordinate transformations, and the special case of N=2 is examined. We also examine a sub-class of theories whereby a Palatini variation dynamically coincides with that of the "ordinary" Hilbert variational principle; in particular we examine a generalized Brans-Dicke theory and the associated role of conformal transformations.Comment: 16 pages, LaTe

    Bose-condensation through resonance decay

    Full text link
    We show that a system described by an equation of state which contains a high number of degrees of freedom (resonances) can create a considerable amount of superfluid (condensed) pions through the decay of short-lived resonances, if baryon number and entropy are large and the dense matter decouples from chemical equilibrium earlier than from thermal equilibrium. The system cools down faster in the presence of a condensate, an effect that may partially compensate the enhancement of the lifetime expected in the case of quark-gluon-plasma formation.Comment: 12 pages GSI-93-27 PREPRIN

    One-loop contribution to the neutrino mass matrix in NMSSM with right-handed neutrinos and tri-bimaximal mixing

    Full text link
    Neutrino mass patterns and mixing have been studied in the context of next-to-minimal supersymmetric standard model (NMSSM) with three gauge singlet neutrino superfields. We consider the case with the assumption of R-parity conservation. The vacuum expectation value of the singlet scalar field SS of NMSSM induces the Majorana masses for the right-handed neutrinos as well as the usual ÎĽ\mu-term. The contributions to the light neutrino mass matrix at the tree level as well as one-loop level are considered, consistent with the tri-bimaximal pattern of neutrino mixing. Light neutrino masses arise at the tree level through a TeV scale seesaw mechanism involving the right-handed neutrinos. Although all the three light neutrinos acquire non-zero masses at the tree-level, we show that the one-loop contributions can be comparable in size under certain conditions.Comment: 14 pages, 7 figure

    Remark on the minimal seesaw model and leptogenesis with tri/bi-maximal mixing

    Full text link
    We have studied a leptogenesis scenario in the framework of the minimal seesaw model with tri/bi-maximal mixing. Usually, at least one of the elements in the Dirac mass matrix is fixed to be zero, for example, we denote it by b2=0b_2=0. We have pointed out that the absolute value of the CP asymmetry has several minimums and maximums with non-zero b2b_2. Thus one can expect that more rich phenomena, such as an enhanced leptogenesis, are hidden in the b2≠0b_2 \neq 0 space.Comment: 9 pages, 7 figures, uses RevTex4. To appear in Physcal Review

    Neutrino masses and flavor symmetries

    Full text link
    The problem of neutrino masses and mixing angles is analysed in a class of supersymmetric grand unified models, with SO(10) gauge symmetry and global U(2) flavour symmetry. Adopting the seesaw mechanism for the generation of the neutrino masses, one obtains a mass matrix for the left-handed neutrinos which is directly related to the parameters of the charged sector, while the unknown parameters of the right-handed Majorana mass matrix are inglobed in a single factor.Comment: 17 pages, 1 eps figure, uses graphicx.sty, LaTeX 2e, to be published on "Il Nuovo Cimento

    Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts

    No full text
    A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions
    • …
    corecore