3,668 research outputs found

    Gravitational Flux Tubes

    Get PDF
    By studying multidimensional Kaluza-Klein theories, or gravity plus U(1) or SU(2) gauge fields it is shown that these theories possess similar flux tube solutions. The gauge field which fills the tube geometry of these solutions leads to a comparision with the flux tube structures in QCD. These solutions also carry a ``magnetic'' charge, Q, which for the SU(2) Einstein-Yang-Mills (EYM) system exhibits a dual relationship with the Yang-Mills gauge coupling, g, (Q=1/gQ=1/g). As Q→0Q \to 0 or Q→∞Q \to \infty, g→∞g \to \infty or g→0g \to 0 respectively. Thus within this classical EYM field theory we find solutions which have features - flux tubes, magnetic charges, large value of the gauge coupling - that are similar to the key ingredients of confinement in QCD.Comment: REVTEX, 12 p

    Tunnel junctions of unconventional superconductors

    Full text link
    The phenomenology of Josephson tunnel junctions between unconventional superconductors is developed further. In contrast to s-wave superconductors, for d-wave superconductors the direction dependence of the tunnel matrix elements that describe the barrier is relevant. We find the full I-V characteristics and comment on the thermodynamical properties of these junctions. They depend sensitively on the relative orientation of the superconductors. The I-V characteristics differ from the normal s-wave RSJ-like behavior.Comment: 4 pages, revtex, 4 (encapsulated postscript) figures (figures replaced

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Aligned Drawings of Planar Graphs

    Get PDF
    Let GG be a graph that is topologically embedded in the plane and let A\mathcal{A} be an arrangement of pseudolines intersecting the drawing of GG. An aligned drawing of GG and A\mathcal{A} is a planar polyline drawing Γ\Gamma of GG with an arrangement AA of lines so that Γ\Gamma and AA are homeomorphic to GG and A\mathcal{A}. We show that if A\mathcal{A} is stretchable and every edge ee either entirely lies on a pseudoline or it has at most one intersection with A\mathcal{A}, then GG and A\mathcal{A} have a straight-line aligned drawing. In order to prove this result, we strengthen a result of Da Lozzo et al., and prove that a planar graph GG and a single pseudoline L\mathcal{L} have an aligned drawing with a prescribed convex drawing of the outer face. We also study the less restrictive version of the alignment problem with respect to one line, where only a set of vertices is given and we need to determine whether they can be collinear. We show that the problem is NP-complete but fixed-parameter tractable.Comment: Preliminary work appeared in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Quantum Zeno and anti-Zeno effects in surface diffusion of interacting adsorbates

    Get PDF
    Surface diffusion of interacting adsorbates is here analyzed within the context of two fundamental phenomena of quantum dynamics, namely the quantum Zeno effect and the anti-Zeno effect. The physical implications of these effects are introduced here in a rather simple and general manner within the framework of non-selective measurements and for two (surface) temperature regimes: high and very low (including zero temperature). The quantum intermediate scattering function describing the adsorbate diffusion process is then evaluated for flat surfaces, since it is fully analytical in this case. Finally, a generalization to corrugated surfaces is also discussed. In this regard, it is found that, considering a Markovian framework and high surface temperatures, the anti-Zeno effect has already been observed, though not recognized as such.Comment: 17 pages, 1 figur

    Ciliated Foregut Cyst of the Pancreas

    Get PDF
    Cystic lesions of the pancreas are relatively uncommon. We describe the case of a young man with a complex cystic mass located within the head of the pancreas. The patient underwent exploration with resection of the mass. Pathology revealed a ciliated epithelial cyst, a rare cystic lesion of the pancreas

    Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle

    Get PDF
    The single-item stochastic lot-sizing problem is to find an inventory replenishment policy in the presence of discrete stochastic demands under periodic review and finite time horizon. A closely related problem is the single-period newsvendor model. It is well known that the newsvendor problem admits a closed formula for the optimal order quantity whenever the revenue and salvage values are linear increasing functions and the procurement (ordering) cost is fixed plus linear. The optimal policy for the single-item lot-sizing model is also well known under similar assumptions. In this paper we show that the classical (single-period) newsvendor model with fixed plus linear ordering cost cannot be approximated to any degree of accuracy when either the demand distribution or the cost functions are given by an oracle. We provide a fully polynomial time approximation scheme for the nonlinear single-item stochastic lot-sizing problem, when demand distribution is given by an oracle, procurement costs are provided as nondecreasing oracles, holding/backlogging/disposal costs are linear, and lead time is positive. Similar results exist for the nonlinear newsvendor problem. These approximation schemes are designed by extending the technique of K-approximation sets and functions.National Science Foundation (U.S.) (Contract CMMI-0758069)United States. Office of Naval Research (Grant N000141110056

    High and Low Dimensions in The Black Hole Negative Mode

    Full text link
    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of space-time dimension by constructing two perturbative expansions: one for large d and the other for small d-3, and determining as many coefficients as we are able to compute analytically. Joining the two expansions we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d=4.Comment: 17 pages, 4 figures. v2: added reference. v3: published versio

    On the physical meaning of Fermi coordinates

    Full text link
    (Some Latex problems should be removed in this version) Fermi coordinates (FC) are supposed to be the natural extension of Cartesian coordinates for an arbitrary moving observer in curved space-time. Since their construction cannot be done on the whole space and even not in the whole past of the observer we examine which construction principles are responsible for this effect and how they may be modified. One proposal for a modification is made and applied to the observer with constant acceleration in the two and four dimensional Minkowski space. The two dimensional case has some surprising similarities to Kruskal space which generalize those found by Rindler for the outer region of Kruskal space and the Rindler wedge. In perturbational approaches the modification leads also to different predictions for certain physical systems. As an example we consider atomic interferometry and derive the deviation of the acceleration-induced phase shift from the standard result in Fermi coordinates.Comment: 11 pages, KONS-RGKU-94/02 (Latex
    • …
    corecore