91 research outputs found
Producing valid statistics when legislation, culture, and medical practices differ for births at or before the threshold of survival: Report of a European workshop
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Downloa
Two-dimensional turbulence in magnetised plasmas
In an inhomogeneous magnetised plasma the transport of energy and particles
perpendicular to the magnetic field is in general mainly caused by quasi
two-dimensional turbulent fluid mixing. The physics of turbulence and structure
formation is of ubiquitous importance to every magnetically confined laboratory
plasma for experimental or industrial application. Specifically, high
temperature plasmas for fusion energy research are also dominated by the
properties of this turbulent transport. Self-organisation of turbulent vortices
to mesoscopic structures like zonal flows is related to the formation of
transport barriers that can significantly enhance the confinement of a fusion
plasma. This subject of great importance in research is rarely touched on in
introductory plasma physics or continuum dynamics courses. Here a brief
tutorial on 2D fluid and plasma turbulence is presented as an introduction to
the field, appropriate for inclusion in undergraduate and graduate courses.Comment: This is an author-created, un-copyedited version of an article
published in European Journal of Physics. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at doi: 10.1088/0143-0807/29/5/00
Engaging (Past) Participants: The Case of radicalprintshops.org
Wikis have for some time been heralded for their democratic and participatory potential and there has been significant research into the use of wikis in a variety of contexts. Within academic research they tend to be used by closed groups to manage material rather than for research per se. This chapter describes an experiment and the challenges to do the latter through the instigation of the open access wiki radicalprintshops.org
Female sexual preferences toward conspecific and hybrid male mating calls in two species of polygynous deer, Cervus elaphus and C. nippon
The behavioral processes at the basis of hybridization and introgression are understudied in terrestrial mammals. We use a unique model to test the role of sexual signals as a reproductive barrier to introgression by investigating behavioral responses to male sexual calls in estrous females of two naturally allopatric but reproductively compatible deer species, red deer and sika deer. Previous studies demonstrated asymmetries in acoustic species discrimination between these species: most but not all female red deer prefer conspecific over sika deer male calls while female sika deer exhibit no preference differences. Here, we extend this examination of acoustic species discrimination to the role of male sexual calls in introgression between parent species and hybrids. Using two-speaker playback experiments, we compared the preference responses of estrous female red and sika deer to male sexual calls from conspecifics versus red × sika hybrids. These playbacks simulate early secondary contact between previously allopatric species after hybridization has occurred. Based on previous conspecific versus heterospecific playbacks, we predicted that most female red deer would prefer conspecific calls while female sika deer would show no difference in their preference behaviors toward conspecific and hybrid calls. However, results show that previous asymmetries did not persist as neither species exhibited more preferences for conspecific over hybrid calls. Thus, vocal behavior is not likely to deter introgression between these species during the early stages of sympatry. On a wider scale, weak discrimination against hybrid sexual signals could substantially contribute to this important evolutionary process in mammals and other taxa
Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at = 200 GeV
The chiral magnetic effect (CME) refers to charge separation along a strong
magnetic field due to imbalanced chirality of quarks in local parity and
charge-parity violating domains in quantum chromodynamics. The experimental
measurement of the charge separation is made difficult by the presence of a
major background from elliptic azimuthal anisotropy. This background and the
CME signal have different sensitivities to the spectator and participant
planes, and could thus be determined by measurements with respect to these
planes. We report such measurements in Au+Au collisions at a nucleon-nucleon
center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is
found that the charge separation, with the flow background removed, is
consistent with zero in peripheral (large impact parameter) collisions. Some
indication of finite CME signals is seen with a significance of 1--3 standard
deviations in mid-central (intermediate impact parameter) collisions.
Significant residual background effects may, however, still be present.Comment: 8 pages, 3 figure
Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions
A linearly polarized photon can be quantized from the Lorentz-boosted
electromagnetic field of a nucleus traveling at ultra-relativistic speed. When
two relativistic heavy nuclei pass one another at a distance of a few nuclear
radii, the photon from one nucleus may interact through a virtual
quark-antiquark pair with gluons from the other nucleus forming a short-lived
vector meson (e.g. ). In this experiment, the polarization was
utilized in diffractive photoproduction to observe a unique spin interference
pattern in the angular distribution of decays.
The observed interference is a result of an overlap of two wave functions at a
distance an order of magnitude larger than the travel distance
within its lifetime. The strong-interaction nuclear radii were extracted from
these diffractive interactions, and found to be fm () and fm (), larger than the nuclear charge
radii. The observable is demonstrated to be sensitive to the nuclear geometry
and quantum interference of non-identical particles
Observation of Global Spin Alignment of and Vector Mesons in Nuclear Collisions
The strong force, as one of the four fundamental forces at work in the
universe, governs interactions of quarks and gluons, and binds together the
atomic nucleus. Notwithstanding decades of progress since Yukawa first
developed a description of the force between nucleons in terms of meson
exchange, a full understanding of the strong interaction remains a major
challenge in modern science. One remaining difficulty arises from the
non-perturbative nature of the strong force, which leads to the phenomenon of
quark confinement at distance scales on the order of the size of the proton.
Here we show that in relativistic heavy-ion collisions, where quarks and gluons
are set free over an extended volume, two species of produced vector (spin-1)
mesons, namely and , emerge with a surprising pattern of global
spin alignment. In particular, the global spin alignment for is
unexpectedly large, while that for is consistent with zero. The
observed spin-alignment pattern and magnitude for the cannot be
explained by conventional mechanisms, while a model with strong force fields
accommodates the current data. This is the first time that the strong force
field is experimentally supported as a key mechanism that leads to global spin
alignment. We extract a quantity proportional to the intensity of the field of
the strong force. Within the framework of the Standard Model, where the strong
force is typically described in the quark and gluon language of Quantum
Chromodynamics, the field being considered here is an effective proxy
description. This is a qualitatively new class of measurement, which opens a
new avenue for studying the behaviour of strong force fields via their imprint
on spin alignment
- …