4,523 research outputs found

    Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction

    Full text link
    For a cell moving in hydrodynamic flow above a wall, translational and rotational degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling of convection and diffusion due to the position-dependent mobility. These couplings render calculation of the mean encounter time between cell surface receptors and ligands on the substrate very difficult. Here we show for a two-dimensional model system how analytical progress can be achieved by treating motion in the vertical direction by an effective reaction term in the mean first passage time equation for the rotational degree of freedom. The strength of this reaction term can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical results are confirmed by computer simulations and allow to assess the relative roles of convection and diffusion for different scaling regimes of interest.Comment: Reftex, postscript figures include

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte

    Efficiency of initiating cell adhesion in hydrodynamic flow

    Full text link
    We theoretically investigate the efficiency of initial binding between a receptor-coated sphere and a ligand-coated wall in linear shear flow. The mean first passage time for binding decreases monotonically with increasing shear rate. Above a saturation threshold of the order of a few 100 receptor patches, the binding efficiency is enhanced only weakly by increasing their number and size, but strongly by increasing their height. This explains why white blood cells in the blood flow adhere through receptor patches localized to the tips of microvilli, and why malaria-infected red blood cells form elevated receptor patches (knobs).Comment: 4 pages, Revtex, 4 Postscript figures included, to appear in PR

    Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers

    Full text link
    Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a 10-fold noise reduction in the frequency range up to 200 MHz. Based on our measurement results as well as on numerical simulations we establish a model for the reduction of GAWBS noise in photonic crystal fibers.Comment: 4 pages, 7 figures; added numerical simulations, added reference

    Mean first passage times for bond formation for a Brownian particle in linear shear flow above a wall

    Full text link
    Motivated by cell adhesion in hydrodynamic flow, here we study bond formation between a spherical Brownian particle in linear shear flow carrying receptors for ligands covering the boundary wall. We derive the appropriate Langevin equation which includes multiplicative noise due to position-dependent mobility functions resulting from the Stokes equation. We present a numerical scheme which allows to simulate it with high accuracy for all model parameters, including shear rate and three parameters describing receptor geometry (distance, size and height of the receptor patches). In the case of homogeneous coating, the mean first passage time problem can be solved exactly. In the case of position-resolved receptor-ligand binding, we identify different scaling regimes and discuss their biological relevance.Comment: final version after minor revision

    The Hamburg/ESO R-process Enhanced Star survey (HERES) IV. Detailed abundance analysis and age dating of the strongly r-process enhanced stars CS 29491-069 and HE 1219-0312

    Full text link
    We report on a detailed abundance analysis of two strongly r-process enhanced, very metal-poor stars newly discovered in the HERES project, CS 29491-069 ([Fe/H]=-2.51, [r/Fe]=+1.1) and HE 1219-0312 ([Fe/H]=-2.96, [r/Fe]=+1.5). The analysis is based on high-quality VLT/UVES spectra and MARCS model atmospheres. We detect lines of 15 heavy elements in the spectrum of CS 29491-069, and 18 in HE 1219-0312; in both cases including the Th II 4019 {\AA} line. The heavy-element abundance patterns of these two stars are mostly well-matched to scaled solar residual abundances not formed by the s-process. We also compare the observed pattern with recent high-entropy wind (HEW) calculations, which assume core-collapse supernovae of massive stars as the astrophysical environment for the r-process, and find good agreement for most lanthanides. The abundance ratios of the lighter elements strontium, yttrium, and zirconium, which are presumably not formed by the main r-process, are reproduced well by the model. Radioactive dating for CS 29491-069 with the observed thorium and rare-earth element abundance pairs results in an average age of 9.5 Gyr, when based on solar r-process residuals, and 17.6 Gyr, when using HEW model predictions. Chronometry seems to fail in the case of HE 1219-0312, resulting in a negative age due to its high thorium abundance. HE 1219-0312 could therefore exhibit an overabundance of the heaviest elements, which is sometimes called an "actinide boost"

    Towards higher precision and operational use of optical homodyne tomograms

    Get PDF
    We present the results of an operational use of experimentally measured optical tomograms to determine state characteristics (purity) avoiding any reconstruction of quasiprobabilities. We also develop a natural way how to estimate the errors (including both statistical and systematic ones) by an analysis of the experimental data themselves. Precision of the experiment can be increased by postselecting the data with minimal (systematic) errors. We demonstrate those techniques by considering coherent and photon-added coherent states measured via the time-domain improved homodyne detection. The operational use and precision of the data allowed us to check for the first time purity-dependent uncertainty relations and uncertainty relations for Shannon and R\'{e}nyi entropies.Comment: 11 pages, 6 figures, 1 table, some results are extende
    • …
    corecore