107 research outputs found

    Photoionization Broadening of the 1S-2S Transition in a Beam of Atomic Hydrogen

    Get PDF
    We consider the excitation dynamics of the two-photon \sts transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte-Carlo simulation, we calculate the line shape of the \sts transition for the experimental geometry used in the two latest absolute frequency measurements (M. Niering {\it et al.}, PRL 84, 5496 (2000) and M. Fischer {\it et al.}, PRL 92, 230802 (2004)). The calculated line shift and line width are in excellent agreement with the experimentally observed values. From this comparison we can verify the values of the dynamic Stark shift coefficient for the \sts transition for the first time on a level of 15%. We show that the ionization modifies the velocity distribution of the metastable atoms, the line shape of the \sts transition, and has an influence on the derivation of its absolute frequency.Comment: 10 pages, 5 figure

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Two-Loop Self-Energy Corrections to the Fine-Structure

    Get PDF
    We investigate two-loop higher-order binding corrections to the fine structure, which contribute to the spin-dependent part of the Lamb shift. Our calculation focuses on the so-called ``two-loop self-energy'' involving two virtual closed photon loops. For bound states, this correction has proven to be notoriously difficult to evaluate. The calculation of the binding corrections to the bound-state two-loop self-energy is simplified by a separate treatment of hard and soft virtual photons. The two photon-energy scales are matched at the end of the calculation. We explain the significance of the mathematical methods employed in the calculation in a more general context, and present results for the fine-structure difference of the two-loop self-energy through the order of α8\alpha^8.Comment: 19 pages, LaTeX, 2 figures; J. Phys. A (in press); added analytic results for two-loop form-factor slopes (by P. Mastrolia and E. Remiddi

    Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure

    Full text link
    The combination of ultra-cold atomic clouds with the light fields of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity's optical axis, where the atoms are confined by a magnetic trap. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase-locked to the first one and tuned close to a fundamental cavity mode drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure

    Atom chip based generation of entanglement for quantum metrology

    Full text link
    Atom chips provide a versatile `quantum laboratory on a microchip' for experiments with ultracold atomic gases. They have been used in experiments on diverse topics such as low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. A severe limitation of atom chips, however, is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing, and quantum metrology. Here we report experiments where we generate multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We employ this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate and show that they are useful for quantum metrology. The observed 3.7 dB reduction in spin noise combined with the spin coherence imply four-partite entanglement between the condensate atoms and could be used to improve an interferometric measurement by 2.5 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques demonstrated here could be directly applied in chip-based atomic clocks which are currently being set up

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic

    Experimental progress in positronium laser physics

    Get PDF

    Ion homeostasis in the Chloroplast

    Full text link
    peer reviewedThe chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis
    corecore