547 research outputs found

    How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions

    Get PDF
    The deduction by conventional means of qualitative and quantitative information about groundwater discharge into lakes is complicated. Nevertheless, at least for semi-arid regions with limited surface water availability, this information is crucial to ensure future water availability for drinking and irrigation purposes. <br><br> Overcoming this lack of discharge information, we present a satellite-based multi-temporal sea-surface-temperature (SST) approach. It exploits the occurrence of thermal anomalies to outline groundwater discharge locations using the example of the Dead Sea. Based on a set of 19 Landsat Enhanced Thematic Mapper (ETM+) images 6.2 (high gain), recorded between 2000 and 2002, we developed a novel approach which includes (i) an objective exclusion of surface-runoff-influenced data which would otherwise lead to erroneous results and (ii) a temporal SST variability analysis based on six statistical measures amplifying thermal anomalies caused by groundwater. <br><br> After excluding data influenced by surface runoff, we concluded that spatial anomaly patterns of the standard deviation and range of the SST data series spatially fit best to in situ observed discharge locations and, hence, are most suitable for detecting groundwater discharge sites

    What we observe is biased by what other people tell us: beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues

    Get PDF
    For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes

    Resonance structure in the {\gamma}{\gamma} and π0π0\pi^0\pi^0 systems in dC interactions

    Full text link
    Along with π0\pi^0 and {\eta} mesons, a resonance structure in the invariant mass spectrum of two photons at M{\gamma}{\gamma} = 360 \pm 7 \pm 9 MeV is observed in the reaction d + C \rightarrow {\gamma} + {\gamma} + X at momentum 2.75 GeV/c per nucleon. Estimates of its width and production cross section are {\Gamma} = 64 \pm 18 MeV and σγγ\sigma_{\gamma\gamma} = 98 \pm 24 {\mu}b, respectively. The collected statistics amount to 2339 \pm 340 events of 1.5 \cdot 10^6 triggered interactions of a total number ~ 10^12 of dC-interactions. The results on observation of the resonance in the invariant mass spectra of two π0\pi^0 mesons are presented: the data obtained in the d + C \rightarrow {\gamma} + {\gamma} reaction is confirmed by the d + C \rightarrow π0\pi^0 + π0\pi^0 reaction: Mπ0π0M_{\pi^0\pi^0} = 359.2 \pm 1.9 MeV, {\Gamma} = 48.9 \pm 4.9 MeV; the ratio of Br(R\rightarrow{\gamma}{\gamma}) / Br(R\rightarrowπ0π0\pi^0\pi^0) = (1.8 {\div} 3.7)\cdot10^-3.Comment: 10 pages, 11 figure

    Some open questions in TDDFT: Clues from Lattice Models and Kadanoff-Baym Dynamics

    Full text link
    Two aspects of TDDFT, the linear response approach and the adiabatic local density approximation, are examined from the perspective of lattice models. To this end, we review the DFT formulations on the lattice and give a concise presentation of the time-dependent Kadanoff-Baym equations, used to asses the limitations of the adiabatic approximation in TDDFT. We present results for the density response function of the 3D homogeneous Hubbard model, and point out a drawback of the linear response scheme based on the linearized Sham-Schl\"uter equation. We then suggest a prescription on how to amend it. Finally, we analyze the time evolution of the density in a small cubic cluster, and compare exact, adiabatic-TDDFT and Kadanoff-Baym-Equations densities. Our results show that non-perturbative (in the interaction) adiabatic potentials can perform quite well for slow perturbations but that, for faster external fields, memory effects, as already present in simple many-body approximations, are clearly required.Comment: 15 pages, submitted to Chemical Physic

    Experimental observation of high field diamagnetic fluctuations in Niobium

    Get PDF
    We have performed a magnetic study of a bulk metallic sample of Nb with critical temperature Tc=8.5T_{c}=8.5 K. Magnetization versus temperature (M {\it vs} T) data obtained for fixed magnetic fields above 1 kOe show a superconducting transition which becomes broader as the field is increased. The data are interpreted in terms of the diamagnetic lowest Landau level (LLL) fluctuation theory. The scaling analysis gives values of the superconducting transition temperature Tc(H)T_{c}(H) consistent with Hc2(T)H_{c2}(T)% . We search for universal 3D LLL behavior by comparing scaling results for Nb and YBaCuO, but obtain no evidence for universality.Comment: 5 pages, 6 figures, Accepted for publication in Phys.Rev.

    Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor

    Full text link
    If the zero-field transition in high temperature superconductors such as YBa_2Cu_3O_7-\delta is a critical point in the universality class of the 3-dimensional XY model, then the general theory of critical phenomena predicts the existence of a critical region in which thermodynamic functions have a characteristic scaling form. We report the first attempt to calculate the universal scaling function associated with the specific heat, for which experimental data have become available in recent years. Scaling behaviour is extracted from a renormalization-group analysis, and the 1/N expansion is adopted as a means of approximation. The estimated scaling function is qualitatively similar to that observed experimentally, and also to the lowest-Landau-level scaling function used by some authors to provide an alternative interpretation of the same data. Unfortunately, the 1/N expansion is not sufficiently reliable at small values of N for a quantitative fit to be feasible.Comment: 20 pages; 4 figure

    Elementary vortex pinning potential in a chiral p-wave superconductor

    Full text link
    The elementary vortex pinning potential is studied in a chiral p-wave superconductor with a pairing d=z(k_x + i k_y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and numerical results are presented to show that the vortex pinning potential is dependent on whether the vorticity and chirality are parallel or antiparallel. Mutual cancellation of the vorticity and chirality around a vortex is physically crucial to the effect of the pinning center inside the vortex core.Comment: 4 pages, 4 figures include

    Anisotropic impurities in anisotropic superconductors

    Full text link
    Physical properties of anisotropic superconductors like the critical temperature and others depend sensitively on the electron mean free path. The sensitivity to impurity scattering and the resulting anomalies are considered a characteristic feature of strongly anisotropic pairing. These anomalies are usually analyzed in terms of s-wave impurity scattering which leads to universal pair breaking effects depending on only two scattering parameters, the mean free path and the impurity cross section. We investigate here corrections coming from anisotropies in the scattering cross section, and find not only quantitative but also qualitative deviations from universal s-wave isotropic pairbreaking. The properties we study are the transition temperature, the density of states, quasiparticle bound states at impurities, and pinning of flux lines by impurities.Comment: 19 page
    corecore