1,614 research outputs found

    Spatial variations in the spectral index of polarized synchrotron emission in the 9 yr WMAP sky maps

    Full text link
    We estimate the spectral index, beta, of polarized synchrotron emission as observed in the 9 yr WMAP sky maps using two methods, linear regression ("T-T plot") and maximum likelihood. We partition the sky into 24 disjoint sky regions, and evaluate the spectral index for all polarization angles between 0 deg and 85 deg in steps of 5. Averaging over polarization angles, we derive a mean spectral index of beta_all-sky=-2.99+-0.01 in the frequency range of 23-33 GHz. We find that the synchrotron spectral index steepens by 0.14 from low to high Galactic latitudes, in agreement with previous studies, with mean spectral indices of beta_plane=-2.98+-0.01 and beta_high-lat=-3.12+-0.04. In addition, we find a significant longitudinal variation along the Galactic plane with a steeper spectral index toward the Galactic center and anticenter than toward the Galactic spiral arms. This can be well modeled by an offset sinusoidal, beta(l)=-2.85+0.17sin(2l-90). Finally, we study synchrotron emission in the BICEP2 field, in an attempt to understand whether the claimed detection of large-scale B-mode polarization could be explained in terms of synchrotron contamination. Adopting a spectral index of beta=-3.12, typical for high Galactic latitudes, we find that the most likely bias corresponds to about 2% of the reported signal (r=0.003). The flattest index allowed by the data in this region is beta=-2.5, and under the assumption of a straight power-law frequency spectrum, we find that synchrotron emission can account for at most 20% of the reported BICEP2 signal.Comment: 11 pages, 9 figures, updated to match version published in Ap

    Dynamics of Magnetized Bulk Viscous Strings in Brans-Dicke Gravity

    Full text link
    We explore locally rotationally symmetric Bianchi I universe in Brans-Dicke gravity with self-interacting potential by using charged viscous cosmological string fluid. We use a relationship between the shear and expansion scalars and also take the power law for scalar field as well as self-interacting potential. It is found that the resulting universe model maintains its anisotropic nature at all times due to the proportionality relationship between expansion and shear scalars. The physical implications of this model are discussed by using different parameters and their graphs. We conclude that this model corresponds to an accelerated expanding universe for particular values of the parameters.Comment: 17 pages, 6 figure

    Exact Foldy-Wouthuysen transformation for spin 0 particle in curved space

    Full text link
    Up to now, the only known exact Foldy- Wouthuysen transformation (FWT) in curved space is that concerning Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the conformal coupling is one third of the relevant term in the fermionic case.Comment: 10 pages, revtex, improved version to appear in Phys. Rev.

    Potential loss of nutrients from different rearing strategies for fattening pigs on pasture

    Get PDF
    Nutrient load and distribution on pasture were investigated with fattening pigs that: 1) spend a proportion of or their entire life on pasture, 2) were fed either restrictively or ad libitum, and 3) were weaned at different times of the year. The N and P retention in pigs decreased the longer they were kept on pasture. The contents of soil inorganic N and exchangeable K were significantly raised compared to the soil outside the enclosures but with no differences between treatments. Pig grazing did not affect extractable soil P. Regular moving of huts, feeding and water troughs was effective in ensuring that nutrients were more evenly distributed on the paddocks. Grass cover, as determined by spectral reflectance, was not related to the experimental treatments but only to time of year. During spring and summer, grass was present in parts of the paddocks, whereas during autumn and winter the pigs kept grass cover below 10%. Fattening pigs on pasture carries a high risk of nutrient loss and it is concluded that the most environmentally acceptable way of keeping fattening pigs on pasture involves a combination of reduced dietary N intake, reduced stocking rate and seasonal rather than all year production

    Integrable Multicomponent Perfect Fluid Multidimensional Cosmology II: Scalar Fields

    Get PDF
    We consider anisotropic cosmological models with an universe of dimension 4 or more, factorized into n>1 Ricci-flat spaces, containing an m-component perfect fluid of m non-interacting homogeneous minimally coupled scalar fields under special conditions. We describe the dynamics of the universe: It has a Kasner-like behaviour near the singularity and isotropizes during the expansion to infinity. Some of the considered models are integrable, and classical as well as quantum solutions are found. Some solutions produce inflation from "nothing". There exist classical asymptotically anti-de Sitter wormholes, and quantum wormholes with discrete spectrum.Comment: 28 pages, LaTeX, subm. to Gen. Rel. Gra

    Cosmology with CMB anisotropy

    Get PDF
    Measurements of CMB anisotropy and, more recently, polarization have played a very important role allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe have also been established -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation -- the primordial gravitational wave background.Comment: Plenary talk at the IXth. International Workshop on High Energy Physics Phenomenology (WHEPP-9), Institute of Physics, Bhubaneshwar, India. Jan 3-14, 2006; To appear in the Proceedings to be published in Pramana; 12 pages, 2 figure

    Foreground removal from CMB temperature maps using an MLP neural network

    Full text link
    One of the main obstacles in extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the galactic foregrounds simple, power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined CMB and foreground signals has been investigated. As a specific example, we have analysed simulated data, like that expected from the ESA Planck Surveyor mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates, over more than 80 percent of the sky, that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.Comment: Accepted for publication in Astrophysics and Space Scienc

    Impaired Fasting Glucose Is Associated With Renal Hyperfiltration in the General Population

    Get PDF
    Increased glomerular filtration rate (GFR), also called hyperfiltration, is a proposed mechanism for renal injury in diabetes. The causes of hyperfiltration in individuals without diabetes are largely unknown, including the possible role of borderline hyperglycemia. We assessed whether impaired fasting glucose (IFG; 5.6–6.9 mmol/L), elevated HbA1c, or hyperinsulinemia are associated with hyperfiltration in the general middle-aged population. A total of 1,560 individuals, aged 50–62 years without diabetes, were included in the Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-T6). GFR was measured as single-sample plasma iohexol clearance. Hyperfiltration was defined as GFR >90th percentile, adjusted for sex, age, weight, height, and use of renin-angiotensin system inhibitors. Participants with IFG had a multivariable-adjusted odds ratio of 1.56 (95% CI 1.07–2.25) for hyperfiltration compared with individuals with normal fasting glucose. Odds ratios (95% CI) of hyperfiltration calculated for a 1-unit increase in fasting plasma glucose (FPG) and HbA1c, after multivariable-adjustment, were 1.97 (1.36–2.85) and 2.23 (1.30–3.86). There was no association between fasting insulin levels and hyperfiltration. A nonlinear association between FPG and GFR was observed (df = 3, P < 0.0001). GFR increased with higher glucose levels, with a steeper slope beginning at FPG ≥5.4 mmol/L. Borderline hyperglycemia was associated with hyperfiltration, whereas hyperinsulinemia was not. Longitudinal studies are needed to investigate whether the hyperfiltration associated with IFG is a risk factor for renal injury in the general population

    The effect of systematics on polarized spectral indices

    Full text link
    We study four particularly bright polarized compact objects (Tau A, Virgo A, 3C273 and Fornax A) in the 7-year WMAP sky maps, with the goal of understanding potential systematics involved in estimation of foreground spectral indices. We estimate the spectral index, the polarization angle, the polarization fraction and apparent size and shape of these objects when smoothed to a nominal resolution of 1 degree FWHM. Second, we compute the spectral index as a function of polarization orientation, alpha. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, computing it for the K- and Ka-band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index beta=-2.59+-0.03 for alpha=30 degrees, and beta=-2.03+-0.01 for alpha=50 degrees. On the other hand, the spectral index between Ka and Q band is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is in particular sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K-band polarization data at 1 degree scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.Comment: 5 pages, 6 figures, submitted to ApJ; new figure and expanded conclusio
    corecore