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Preface  
The Nordic Committee of Senior Officials for Food Issues is a body under the Nordic 
Council of Ministers co-ordinating Nordic work in the field of foods. The Nordic 
Working Group on Food Toxicology and Risk Evaluation (NNT) has been given the 
responsibility by the Committee to promote co-operation and co-ordination among 
Nordic countries in matters relating to food toxicology and risk assessment. 
 
Under this working group a project group was established in order to discuss and 
evaluate the usefulness of the DNA microarray technique in the safety assessment of 
genetically modified plants and other novel plants as well as the usefulness and 
possibility for making a database containing profiles of food plants. This includes a 
description of the state of the art, the technical challenges and a discussion of a more 
targeted microarray and the nature of the probes that may be relevant for such an 
array. 
 
 
The report has been accepted by NNT in October 2003. 
 
The project group agreed on a number of conclusions, which is summarised in 
chapter 8. 
  
The project group consisted of the following members: 
 
Jan Pedersen Danish Veterinary and Food Administration Denmark 
(Chairman) 
Ib Knudsen Danish Veterinary and Food Administration Denmark 
Folmer D. Eriksen Danish Veterinary and Food Administration Denmark 
Sirpa Kärenlampi Institute of Applied Biotechnology,  Finland 
 University of Kuopio 
Arne Mikalsen  Norwegian Institute of Public Health Norway 
Ulf Hammerling National Food Administration Sweden 
Esther Kok Institute for Food Safety, RIKILT Netherland 
Søren Bak The Royal Veterinary and Agricultural University Denmark 
Henrik Bjørn Nielsen Technical University of Denmark, CBS Denmark 
 
The report was prepared by E.J. Kok, G.A. Kleter and J.P. van Dijk, RIKILT Institute of 
Food Safety, Bornsesteeg 45, PO Box 230, 6700 AE Wageningen, The Netherlands. 
The authors would like to thank ir. Angeline M.A. Van Hoef for her contribution to the 
manuscript.  
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 Executive summary 
 
Until 1997 there were no common regulations or guidelines within the European Union 

to assess the safety of food from novel plant varieties. This situation changed in 1997 

when the European Regulation on Novel Foods and Novel Food Ingredients came into 

force (EU regulation (EC) No 258/97). This Regulation, commonly referred to as the 

Novel Foods Regulation, covers also foods and food ingredients containing, consisting 

of or produced from genetically modified organisms (GMOs). In July 2003 the 

European Council of Ministers have adopted the Regulation on Genetically Modified 

Food and Feed. This new regulation will replace the part of the Novel Foods 

Regulation dealing with GMOs and GMO-derived products 

(http://europa.eu.int/comm/food/fs/biotech/biotech08_en.pdf). According to the new 

regulation the scientific risk assessment will be carried out by the European Food 

Safety Authority along the lines of the guidance document for the risk assessment of 

genetically modified (GM) plants and derived food and feed 

(http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf).  

 

An important part of the initial phase of the safety evaluation of all these novel GMO-

derived plant products is an elaborate comparative compositional analysis, including 

analyses of key nutrients and anti-nutrients, of the newly developed plant variety and 

of the ‘traditional’ counterpart(s), if available, that was already on the market. Although 

this has been considered as an adequate procedure for evaluating the safety of GM 

plants, some concerns have been raised whether this targeted approach will cover all 

unintended effects that may occur and may have an influence on the consumer’s 

health. As a result of these developments the interest in the development of 

informative non-targeted methodologies to screen for compositional differences and 

assess their toxicological relevance has rapidly increased. It was generally 

acknowledged that the time had come to evaluate new analytical approaches that may 

give more insight into possible changes in the plant’s physiology compared to the 

current approach of analysing a limited set of key constituting compounds.  

 

These so-called unbiased methodologies have the potential to screen for aberrations 

in a much wider range of metabolic routes compared to the targeted analyses. Non-

http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf
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targeted approaches may relate to either the transcriptome, i.e. the total of initial 

transcription products (mRNA) per cell, or the proteome, the total of proteins per cell, 

or the metabolome, the total of metabolites per cell. Recently even the glycome, the 

total of sugar molecules per cell, has become subject of scientific scrutiny to detect 

specific changes. For all of these different cell constituents more or less advanced 

profiling methodologies have been developed. One of the most promising 

developments in this respect is the DNA microarray technology. Prior to the advent of 

the microarray technology methods were available to screen for differences in gene 

expression, but only a very limited set of informative probes could be analysed 

simultaneously in the mRNA population of interest. The microarray technology 

miniaturises well-established molecular biological and biochemical principles, thereby 

enabling to establish gene expression profiles of individual mRNA samples on the 

basis of thousands of different probes, representing numerous metabolic routes. In 

reality mRNA levels will not necessarily correlate closely to the abundance of the 

corresponding protein or its biological activity. However, for the near future the gene 

expression microarray may be the best developed system for the unbiased screening 

for metabolic changes in plants.  

 

Initially two types of arrays were available: oligonucleotide arrays, where the oligo’s 

were synthesised on a solid support, and cDNA or oligonucleotide arrays, where 

presynthesised probes were spotted on glass slides. Recently a number of alternative 

array systems have been developed that either increase the sensitivity of the system, 

reduce the time for hybridisation or require less expensive equipment.  

 

The quality of the mRNA populations to be hybridised in microarray experiments is 

crucial for the reliability of the resulting data. The mRNA has to be of high-standard 

quality in order to be able to compare two subsequent samples. Therefore 

standardisation of the sampling and mRNA isolation protocols as well as the quality 

control procedure is required. As slightly different conditions in the food or food 

product will generally have large effects on the quality of the isolated mRNA, it is 

unlikely that the microarray technology can become standard for the safety evaluation 

of processed products. The technology will have its main application in the living 

organism: the development and safety evaluation of novel plant varieties, rather than 

in the evaluation of the derived products.  



 9

 

Because of the fact that any microarray experiment will result in a large number of 

data points, it is crucial that the experiment is well-designed taking into account a) 

available experimental, control and reference samples, b) statistical considerations 

and c) practical limitations such as the number of available mRNA samples and the 

series of arrays that can be handled simultaneously. 

 

Data analysis and data mining form the last but very important phase in the 

experimental chain. In general, aspects of data storage and analysis should already 

be considered prior to the experiment taking place in order to prevent data loss and to 

be able to include the right references and not lose time afterwards by undirected data 

computing. Data analysis is usually performed by the subsequent steps of 

quantification of the signal, normalisation of the obtained data and data visualisation 

and interpretation. In recent years a large variety of software packages have become 

available that aim on any of these different aspects or combine subsequent stages. 

One drawback of computerising large data sets is that the output may be difficult to 

interpret in relation to potential health aspects. Small differences in experimental set-

up will often result in differences in gene expression profiles that can be detected by 

the data analysis software but are unrelated to the scientific questions underlying the 

experiment.   

 

Furthermore, it should always be kept in mind that gene expression analysis by the 

microarray technology will only provide indications on the differential gene expression 

pattern of individual genes that may be related to unintended effects as a result of the 

selected breeding strategy. Only in very specific cases will statistical analysis of the 

microarray results give full evidence of differential gene expression of a gene or a 

cluster of genes. Normally additional analyses by other techniques, such as real-time 

PCR or Northern blotting, will be required to confirm the observations. Furthermore, to 

test the biological and toxicological significance of the results, as DNA or RNA 

differences in itself are not a health issue, it will be necessary to confirm the results 

with experiments on other integrative levels, such as the protein or metabolite level. 

This requirement is partially due to the lack of knowledge on the relationship between 

gene expression and changes in the plant’s physiology.  

 



 10

The first initiatives have been launched to harmonise the criteria for the storage of 

microarray data in globally approachable databases. It is clear that a good database 

design is crucial for the ability to use the wealth of data that will result from the 

growing number of array experiments worldwide. Basically, if the same (commercially 

available) array is used by many research groups this can be seen as a common 

experimental platform. If the results obtained with this array are stored in a centralised 

database, future in silico analyses of the available data may reduce the number of 

experiments needed to obtain the desired information.  

 

Such worldwide initiatives are now starting for a limited number of model plants. 

Important model systems in plant (functional) genomics are Arabidopsis thaliana, rice 

and tomato. The number of microarray gene expression experiments that have been 

performed in plants in general is already considerable and still rapidly increasing. The 

pathways of interest in these studies differ, but the larger part is aimed towards the 

elucidation of stress-related pathways. Microarray studies have revealed, for example, 

unanticipated interrelationships between stress and other elicitors (plant hormone, 

ripening) that induce altered gene expression of the same pathways.  

 

For the safety assessment of novel plant varieties, including GM plants, relevant 

metabolic routes may be nutrient-related pathways as well as metabolic pathways that 

can be used to screen for differences in the plants’ basal physiology. Other metabolic 

routes of interest may be stress-related metabolic pathways as it is known that 

upregulation of these pathways may lead to an increased production of anti-nutrients, 

including natural toxins. It may have advantages to construct a specific food safety 

assessment array comprising these three different categories of probes.  

 

Alternative ‘omics’ approaches comprise proteomics, analysis of the protein fraction, 

metabolomics, analysis of the pool of metabolites, and perhaps glycomics, analysis of 

the sugar molecules, in selected tissues or cell systems. Proteomics is the direct 

counterpart to transcriptomics. As any indication for differential gene expression 

normally will need to be confirmed by other approaches the best way to determine the 

biological effect may be to analyse the proteome for similar shifts in the protein profile. 

The current approach to analyse the proteome is usually restricted to a small subset 

of the proteome and it will be difficult and time-consuming to gain further insight into 
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possible changes in the entire proteome. For the proteome microarrays are also under 

development based on the interactions of individual proteins with their substrates or 

with other proteins. This development may lead in time to ‘whole proteome’ 

approaches that may reduce the necessity for initial gene expression profiling.  

 

The metabolome represents the highest level of physiological interactions and 

consists of all metabolites in the tissue or cell system under investigation. 

Metabolomics, i.e. the non-targeted study of the metabolome, can be a valuable 

addition to gene expression or proteome profiling as it provides insight into the extent 

of altered metabolism as a result of changes in gene expression or translation. The 

drawbacks of current metabolomics are similar to those of proteomics, i.e. the fact that 

only a subset of metabolites can be identified in a single analysis.   

 

Glycomics is the most recent shoot on the ‘omics’ tree and presumably the most 

complicated one as glycosylation patterns change continuously. In future times 

glycomics may, however, also become valuable in hypothesis-driven risk assessment 

strategies for novel (GM) plant varieties.    

 

In general, it can be concluded that the advent of GM plant varieties has rapidly 

enhanced the interest in the compositional characteristics of crop plant species. 

Profiling methodologies have the potential to screen more effectively for differences in 

novel plant varieties as they can, theoretically, cover a much wider range of different 

metabolic routes. The microarray technology has the major advantage that genome-

wide gene expression arrays will become available for the first crop species in the 

near future. As a result of this it can be envisaged that gene expression profiling will 

enforce and refine current targeted safety assessment strategies for novel plant 

varieties. This is, however, likely to be a temporary phenomenon, until whole 

proteome and metabolome profiling methodologies will become available. Finally, 

direct selection of wholesomeness-related differences in novel plant varieties, either 

GM-derived or not, will only be achieved once we have obtained a full understanding 

of the physiology of the plant and its relationship to the health of the consumer. 
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Dansk  resumé  
Indtil 1997 var der ingen fælles reguleringer eller retningslinier i EU til vurdering af 

sikkerheden af fødevarer fra nye plantesorter. Dette ændredes i 1997 da den fælles 

EU rådsforordning om Nye Levnedsmidler og Nye Levnedsmiddelingredienser (kaldet 

Novel food rådsforordningen) trådte i kraft. 

 

Denne regulering dækker bl.a. fødevarer og fødevareingredienser som indeholder, 

består af eller er produceret ved brug af genmodificerede organismer (GMO). I juli 

2003 blev en ny regulering om genmodificerede fødevarer og foderstoffer vedtaget i 

EU’s Ministerråd. Den nye regulering vil erstatte den del af Novel food 

rådsforordningen som vedrører de genmodificerede produkter 

(http://europa.eu.int/comm/food/fs/biotech/biotech08_en.pdf).  

 

 I følge den nye regulering skal den faglige risikovurdering foretages af det 

europæiske fødevare agentur (EFSA) i overensstemmelse med de retningslinier som 

er vedtaget for risikovurdering af genetisk modificerede planter (GM-planter) og de 

afledede fødevarer og foderprodukter 

(http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf).  

 

En vigtig del af denne risikovurdering af fødevarer fra nye genmodificerede planter er 

en indgående sammenligning af indholdsstoffer, herunder vigtige ernæringsstoffer og 

antinutritionelle stoffer, mellem den genmodificerede plante og den tilsvarende 

traditionelle plante. Selvom sammenligningen blev anset for værende tilstrækkelig for 

risikovurdering af GM-planter, har der været rejst tvivl om metoden nu også dækkede 

alle utilsigtede effekter som kunne forekomme og have indflydelse på forbrugerne 

sundhed. Derfor var er der interesse for udvikling af nye ikke-målrettede metoder til 

sammenligning og  screening af indholdsstoffer og vurdere den sundhedsmæssige 

relevans heraf. Det har generelt været erkendt, at tiden var inde til at vurdere nye 

metoder som kunne give bedre indsigt i ændringer i planters fysiologi i forhold til de 

nuværende metoder som ser på et begrænset antal indholdsstoffer. Disse nye (ikke 

fokuserede) metoder har potentialet til at undersøge for ændringer i et meget bredere 

område af metaboliske veje sammenlignet med de traditionelle sammenlignende 

analyser med begrænset antal målinger. 

 

http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf


 13

De nye ikke-fokuserede fremgangsmåder kan relateres til enten transskriptom, 

proteom eller metabolom som er det totale indhold af hhv. mRNA (transskript fra 

DNA), proteiner  eller metabolitter i en celle. Senest er også glycome (indhold af 

sukkermolekyler i en celle) kommet i fokus som mulig metode til måling af ændringer. 

For alle disse forskellige celle komponenter er mere eller mindre avancerede ”profil 

metoder” blevet udviklet. Et af de mest lovende fremskridt i relation til dette er DNA 

mikroarray teknologien. Før fremkomsten af denne teknik var det kun muligt i praksis 

at foretage analyser af et begrænset antal mRNA uden større ressourceanvendelse. 

Mikroarray teknikken nedskalerer velkendte molekylærbiologiske og biokemiske 

principper og muliggør derved simultan måling af mRNA fra flere tusinde gener 

repræsenterende mange metabolisme veje. 

 

I virkeligheden vil mRNA niveauet ikke nødvendigvis være tæt forbundet med 

mængden af det tilhørende protein eller dets biologiske aktivitet.  Imidlertid forventes 

gen ekspressions mikroarray på kortere sigt at være det bedste system til en bred og 

ikke-fokuseret måling for utilsigtede ændringer i en plante. 

 

I starten var to arrays til rådighed: oligonucleotid arrays, hvor oligoer blev 

syntetiserede på et fast materiale og cDNA eller oligonucleotid arrays hvor 

præsyntetiserede prober sættes på en glasplade. Nu findes en række alternative 

arrays systemer som enten øger følsomheden, reducerer tiden til hybridisering eller 

kræver mindre dyrt udstyr. 

 

For at to prøver kan sammenlignes i et mikroarray forsøg skal kvaliteten af mRNA 

være meget høj for at sikre pålideligheden af resultaterne. Derfor er standardisering 

for udtagning af prøver og mRNA isolering, så vel som kvalitetskontrol procedurer, en 

nødvendighed. Da selv en mindre ændring i forholdene af et fødevareprodukt kan 

have en stor effekt på kvaliteten af det oprensede mRNA, er det ikke sandsynlig at 

mikroarray teknikken kan anvendes som standard for risikovurdering af forarbejdede 

fødevarer. Teknikken forventes anvendt på levende organismer dvs. til udvikling og 

risikovurdering af nye plantesorter frem for til risikovurdering af de afledede 

(forarbejdede) produkter.  
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Eftersom mikroarray eksperimenter vil frembringe en stor mængde data, er det vigtigt 

at eksperimentet er godt designet og tager hensyn til a) tilgængelige eksperimentelle 

kontroller og reference prøver, b) statistiske overvejelser og c) praktiske 

begrænsninger såsom antal af tilgængelige mRNA prøver og arrays som kan 

håndteres samtidig.  

Data analyse og data håndtering udgør den sidste, men meget vigtige fase i den 

eksperimentelle kæde. Generelt skal data opbevaring og analyse være overvejet før 

eksperimentets start for, at forbygge tab af informationer, at være i stand til at 

inkludere de rigtige referencer og at undgå at spilde tid på computer analyse med 

dårlige data. Data analyse foregår normalt ved trinvis at kvantificere signalet, 

normalisere data og visualisere og fortolke data. I de senere år er fremkommet en 

lang række forskellige software pakker til brug for disse opgaver. En ulempe ved 

computeranalyse af store mængder af data er, at output (uddata) kan være svært at 

fortolke i relation til potentielle sundhedsmæssige aspekter. 

 

Små forskelle i det eksperimentelle setup kan ofte resultere i forskelle i 

genekspressions profiler som fanges i dataanalysen, men uden at de er relateret til de 

videnskabelige spørgsmål som er grundlaget for eksperimentet. Herudover skal det 

ikke glemmes, at analyse af genekspression ved mikroarray teknikken kun vil give 

indikationer om forskelle i genekspressions mønstre for individuelle gener og som 

måske er relateret til utilsigtede effekter som følge af den selektive forædlingsstrategi. 

 

Kun i særlige tilfælde vil en statistisk analyse af et mikroarary resultat give et endeligt 

bevis for forskel i genekspression af et gen eller for en gruppe af gener. Normalt vil 

det efterfølgende være nødvendigt at analysere med andre metoder så som real-time 

PCR eller Northern blot, for at bekræfte observationerne. Da forskelle i DNA eller RNA 

i sig selv ikke er et sundhedsmæssigt problem, vil det endvidere være nødvendigt at 

undersøge den biologiske og toksikologiske relevans af disse forskelle, f.eks. ved 

måling på protein eller metabolit niveau. Denne nødvendighed er delvis begrundet i 

den manglende viden om relationerne mellem genekspression og ændringer i 

plantens fysiologi. 

 

De første initiativer er taget for at harmonisere de kriterier for lagring af mikroarray 

data i globale tilgængelige databaser. Det er klart at et godt databasedesign er 
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afgørende for anvendeligheden af de store mængder af data som vil fremkomme af 

det voksende antal eksperimenter som foretages på verdensplan. Hvis samme 

(kommercielle) type af array bliver brugt af mange forskergrupper kan dette betragtes 

som en fælles eksperimental platform. Hvis de opnåede resultater fra en sådan array 

lagres i en centraliseret database, vil fremtidige computeranalyser af data måske 

kunne reducere antallet af eksperimenter, som er nødvendige for at opnå den 

ønskede viden. Sådanne initiativer er taget for et begrænset antal af modelplanter. 

Vigtige modelplanter for (funktionel) genomanalyse er Arabidopsis thaliana, ris og 

tomat.  

 

Der er allerede foretaget et stort antal genekspressions ekperimenter baseret på 

mikroarrays og dette antal øges kraftigt. De undersøgte metabolismeveje varierer, 

men en stor del af eksperimenterne er rettet mod de stress relaterede synteseveje. 

Mikroarray studier har fx. afsløret uventede sammenhænge mellem stress og andre 

elicitorer (plantehormoner, modning) som inducerer ændring i genekspression i 

samme synteseveje. I forbindelse med risikovurdering af nye plante sorter, herunder 

genmodificerede planter, kan relevante synteseveje være de synteseveje som er 

ernæringsmæssigt relaterede eller synteseveje, som afspejler plantens basale 

fysiologi. Andre relevante synteseveje kan være de stress relaterede, da det vides at 

en opregulering af disse kan medføre til en forøgelse af de antinutritionelle stoffer 

herunder de naturlige toksiner. Det kan være relevant at lave en specifik DNA 

mikroarray til risikovurdering af fødevarer hvor arrayen indeholder prober for disse tre 

elementer. 

 

Alternative ”omics” omfatter proteomics, analyse af proteinerne, metabolomics, 

analyse af andre celle metabolitter, og måske glycomics som er analysen af 

sukkermolekyler i cellerne. Proteomics kan betragtes som direkte afledet af 

transskriptom da proteinerne dannes fra mRNA. Da enhver indikation for ændret 

genekspression skal bekræftes med andre målinger, kan en bedre metode til måling 

af biologiske effekter være direkte at analysere for ændringer på proteinniveau ved 

brug af proteomics metoden. De nuværende metoder til proteom analyse er imidlertid 

begrænset til en mindre del af det totale proteom, og det vil være både vanskeligt og 

ressourcekrævende at opnå en bedre dækning af ændringer på proteinniveauet. 

Proteom mikroarray er under udvikling og baseret på interaktion mellem individuelle 



 16

proteiner og tilhørende substrater eller andre proteiner. Denne udvikling kan med 

tiden føre til en metode som stort set dækker alle proteiner og reducerer behovet for 

analyse af genekspression. 

 

Metabolomet repræsenterer det højeste niveau af fysiologisk interaktion og består af 

alle alle metabolitter i den celle eller det væv som analyseres. Metabolom analyse dvs 

det ikke målrettede studie af metabolomet, kan være en vigtig tilføjelse til 

genekspression eller proteom analysen da den giver information om omfanget af de 

ændringer som følge af ændringerne i genekspression eller translation. 

Begrænsningerne med hensyn til metabolomics er de samme som for proteomics, at 

det kun er  en mindre del af den totale indhold af metabolitter der kan analyseres for i 

en enkelt analyse. 

 

Glycomics er sidste nye skud på “omics” stammen og er formodentlig den mest 

komplicerede da glycosylerings mønsteret er under konstant ændring. I fremtiden kan 

det ikke udelukkes at glycomics kan bidrage til den hypotese motiverede 

risikovurdering af nye (GM) plantesorter. 

 

Generelt kan det konkluderes at introduktionen af gensplejsede planter har øget 

interessen for sammensætningen af indholdsstoffer i vore afgrødeplanter. Profil 

metoder har potentialet til at analysere effektivt for forskelle i nye plantesorter, idet de 

(teoretisk) dækker meget bredere de forskellige synteseveje. DNA mikroarray 

teknologien har den store fordel, at arrays dækkende hele genomer snart vil være 

tilgængelig for de første afgrødeplanter. Som følge heraf kan det forudses, at 

genekspressions profiler kan forstærke og forbedre de nuværende risikovurderings 

strategier for nye plantesorter. Dette er sandsynligvis kun et midlertidigt fænomen 

indtil hele proteom eller metabolom profiler bliver tilgængelige. Endelig vil en direkte 

selektion for sundhedsrelaterede relevante forskelle i nye plantesorter, herunder 

genmodificerede planter, først være mulig med bedre indsigt i planternes fysiologi og 

deres relation til sundhedsmæssige aspekter for forbrugerne. 
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Yhteenveto 
 

Ennen vuotta 1997 ei Euroopan Unionin alueella ollut yhteisiä pelisääntöjä 

’uuskasvilajikkeista’ peräisin olevien elintarvikkeiden turvallisuuden arviointiin. Tällöin 

astui voimaan Euroopan parlamentin ja neuvoston asetus uuselintarvikkeista ja 

elintarvikkeiden uusista ainesosista. Tämä asetus, jota usein kutsutaan 

uuselintarvikeasetukseksi, kattaa myös geneettisesti muunnettuja organismeja (GMO) 

sisältävät tai niistä koostuvat tai valmistetut elintarvikkeet ja niiden ainesosat. Uuden 

Euroopan parlamentin ja neuvoston asetuksen geneettisesti muunnetuista 

elintarvikkeista ja rehuista arvioidaan astuvan voimaan alkuvuodesta 2004. Se tulee 

korvaamaan uuselintarvikeasetuksen niiltä osin kuin tämä koskee GMO:ja ja niistä 

valmistettuja elintarvikkeita 

(http://europa.eu.int/comm/food/fs/biotech/biotech08_en.pdf). Uuden asetuksen 

mukaan Euroopan elintarviketurvallisuusviranomainen suorittaa tieteellisen 

riskinarvioinnin; tämä tapahtunee niiden suuntaviivojen mukaisesti, jotka on kirjattu 

ohjeistoon geneettisesti muunnettujen (GM) kasvien ja niistä valmistettujen 

elintarvikkeiden ja rehujen riskinarvioinnista 

(http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf). 

 

Kaikkien uusien GMO-peräisten kasvituotteiden turvallisuuden arvioinnin erään 

tärkeän alkuvaiheen muodostaa yksityiskohtainen vertaileva koostumusanalyysi, jossa 

verrrataan tärkeimpiä ravintoaineita ja ravintoarvoa heikentäviä aineita 

(antinutrientteja) uudessa kasvilajikkeessa ja, mikäli mahdollista, sen jo markkinoilla 

olevissa ’perinteisissä’ verrokeissa. Vaikka tätä lähestymistapaa on pidetty sopivana 

GM-kasvien turvallisuuden arviointiin, on toisaalta epäilty, tuoko tämä täsmämenettely 

esille kaikki mahdolliset tahattomat muutokset, joilla saattaa olla vaikutusta kuluttajien 

terveyteen. Tähän liittyen on virinnyt nopeasti kiinnostus kehittää runsaasti tietoa 

antavia yleismenetelmiä koostumuserojen seulontaan ja niiden toksikologisen 

merkityksen arviointiin. Nyt onkin katsottu olevan korkea aika arvioida näitä uusia 

analyyttisiä lähestymistapoja, jotka saattavat antaa paremman kuvan mahdollisista 

kasvin fysiologisista muutoksista kuin nykyinen lähestymistapa, jossa analysoidaan 

rajallinen joukko tärkeimpiä yhdisteitä. 

 

http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf
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Näillä ns. tasapuolisilla menetelmillä on mahdollista kattaa poikkeavuuksia paljon 

suuremmassa joukossa aineenvaihduntareittejä kuin täsmäanalyyseillä. 

Yleismenetelmät viittaavat tavallisesti transkriptomiin (kaikki solun transkriptio- eli 

lähetti-RNA-tuotteet), proteomiin (kaikki solun proteiinit) tai metabolomiin (kaikki solun 

aineenvaihduntatuotteet eli metaboliitit). Viime aikoina on jopa glykomi (kaikki solun 

sokerit) otettu harkittavaksi erityisten muutosten havaitsemisessa. Kaikille 

edellämainituille solun komponenteille on nykyisin olemassa enemmän tai vähemmän 

kehittyneet yleismenetelmät, ns. profilointimenetelmät. Yksi lupaavimmista 

kehityksistä on tapahtunut DNA-mikrosirujen kohdalla. Jo ennen mikrosiruteknologian 

keksimistäkin oli olemassa menetelmiä geenien ilmentymisessä esiintyvien erojen 

seulontaan, mutta niillä pystyttiin analysoimaan kiinnostavasta lähetti-RNA-joukosta 

yhdellä kertaa vain pieni joukko hyödyllisiä tunnistimia. Mikrosiruteknologiassa on 

käytössä vakiintuneet molekyylibiologiset ja biokemialliset periaatteet 

miniatyyrimuodossa, jolloin pystytään tutkimaan yksittäisten lähetti-RNA-näytteiden 

ilmentymisprofiilia tuhansilla tunnistimilla ja näin analysoimaan lukuisia 

aineenvaihduntareittejä. Todellisuudessa lähetti-RNA-tasot eivät välttämättä korreloi 

kovinkaan hyvin vastaavan proteiinin määrän tai biologisen toiminnan kanssa. Tästä 

huolimatta geenien ilmentymistä osoittava mikrosiru saattaa olla lähitulevaisuudessa 

kehittynein systeemi kasvien aineenvaihdunnassa tapahtuneiden muutosten 

tasapuoliseen seulontaan. 

 

Aluksi oli saatavilla kahdentyyppisiä siruja: oligonukleotidisirut, joissa oligonukleotidit 

tuotettiin kiinteälle alustalle, ja komplementaarinen-DNA- tai oligonukleotidisirut, joissa 

etukäteen tuotetuista tunnistimista tehtiin mikropisarat lasilevyille. Viime aikoina on 

kehitetty useita vaihtoehtoisia sirusysteemejä, jotka joko lisäävät systeemin 

herkkyyttä, lyhentävät hybridisaatioaikaa tai tulevat toimeen halvemmilla laitteistoilla. 

 

Mikrosirukokeissa hybridisoitavien lähetti-RNA-populaatioiden laatu on keskeinen 

tekijä tulosten luotettavuuden kannalta. Jotta kahta peräkkäistä näytettä voitaisiin 

verrata toisiinsa, on lähetti-RNA:n laadun oltava huippuluokkaa. Siksi on välttämätöntä 

vakioida näytteenotto- ja lähetti-RNA:n eristysmenetelmät sekä 

laadunvarmennusmenettely. Koska hieman erilaisilla olosuhteilla on yleensä suuri 

vaikutus elintarvikkeista eristetyn lähetti-RNA:n laatuun, ei ole todennäköistä, että 

mikrosiruteknologiasta tulee rutiinimenetelmää prosessoitujen tuotteiden 
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turvallisuuden arviointiin. Teknologian pääsovellusalue tulee olemaan elävä eliö: 

uusien kasvilajikkeiden, eikä niinkään niistä saatujen tuotteiden, kehittäminen ja 

turvallisuuden arviointi. 

 

Koska jokaisesta mikrosirukokeesta saadaan suuri määrä tietoa, on erittäin tärkeää, 

että koe on hyvin suunniteltu, ja huomioi a) käytettävissä olevat koe-, verrokki- ja 

vakiointinäytteet, b) tilastolliset vaatimukset ja c) käytännön rajoitukset, kuten lähetti-

RNA-näytteiden lukumäärän ja mikrosirusarjan, joka pystytään yhdellä kertaa 

käsittelemään. 

 

Tietojen analysointi ja louhinta muodostavat viimeisen, mutta tärkeän vaiheen 

kokeessa. Yleisesti ottaen tietojen säilytys ja analysointi pitäisi miettiä jo ennen kuin 

koetta aloitetaan, jotta vältyttäisiin tietojen häviämiseltä ja voitaisiin ottaa mukaan 

oikeat vakiointinäytteet eikä hukattaisi jälkikäteen aikaa suunnittelemattomaan 

tietojenkäsittelyyn. Tietoja analysoitaessa selvitetään yleensä signaalin suuruus, 

normalisoidaan saadut tulokset, sekä havainnollistetaan ja tulkitaan tulokset. Viime 

vuosina on tullut markkinoille suuri joukko ohjelmistoja, joiden tarkoituksena on 

helpottaa jotakin tai kaikkia edellämainittuja vaiheita. Yksi vaikeus suurten tiedostojen 

käsittelyssä on, että lopputulosta saattaa olla vaikea tulkita erityisesti mahdollisten 

terveyteen liittyvien seikkojen osalta. Pienet erot koeasetelmassa aiheuttavat usein 

sellaisia eroja geenien ilmentymisprofiileissa, jotka voidaan havaita ohjelmistoilla, 

mutta jotka eivät välttämättä liity kokeen tieteelliseen kysymyksenasetteluun. 

 

Lisäksi tulisi aina pitää mielessä, että geenien ilmentymisen analysointi 

mirosirutekniikalla on ainoastaan viitteellinen antaessaan tietoa yksittäisten geenien 

erilaisesta ilmentymistavasta, joka kenties viittaa tahattomiin, valitun 

kasvinjalostusstrategian tuloksena syntyneisiin vaikutuksiin. Mikrosirutulosten 

tilastollinen analyysi antaa vain aivan poikkeustapauksessa varman todisteen geenin 

tai geeniryhmän erilaisesta ilmentymisestä. Normaalitapauksessa havainnot pitää 

varmistaa muilla tekniikoilla, kuten reaaliaika-PCR:llä tai Northern-blottauksella. Koska 

erot DNA:ssa tai RNA:ssa eivät suoranaisesti liity turvallisuuteen, on tulos biologisen 

ja toksikologisen merkityksen testaamiseksi lisäksi vahvistettava muuntyyppisin 

kokein, eli esim. proteiini- tai metaboliittitasolla. Tämä tarve johtuu osittain siitä, että ei 

tiedetä riittävästi geenien ilmentymisen suhteesta kasvin fysiologisiin muutoksiin. 
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Ensimmäiset yritykset harmonisoida kriteerit mikrosirutietojen säilömiseksi kaikkialta 

saatavissa oleviin tietokantoihin on tehty. On selvää, että hyvä tietokannan suunnittelu 

on välttämätöntä, jotta pystytään tehokkaasti käyttämään hyödyksi sitä valtavaa 

tietomäärää, joka syntyy maailmanlaajuisesti yhä kasvavassa mikrosiruanalyysien 

määrässä. Jos useat tutkimusryhmät käyttävät samaa (kaupallista) mikrosirua, tämä 

voisi periaatteessa toimia yhteisenä kokeen perustana. Jos tällä sirulla saadut tiedot 

varastoidaan keskitettyyn tietokantaan, voivat käytettävissä olevien tietojen in silico 

(puhtaasti tietokoneella tehdyt) analyysit tulevaisuudessa vähentää halutun 

informaation saamiseen tarvittavien kokeiden määrää. 

 

Näitä kansainvälisiä aloitteita on käynnistymässä tietyillä mallikasveilla. Kasvien 

(funktionaalisen) genomiikan tärkeitä mallisysteemejä ovat lituruoho (Arabidopsis 

thaliana), riisi ja tomaatti. Geenien ilmentymiskokeita mikrosiruilla on tehty kasveilla jo 

huomattavan paljon, ja määrä kasvaa nopeasti. Mielenkiinto näissä kokeissa on 

kohdistunut monenlaisiin aineenvaihduntareitteihin, mutta merkittävä osa tähtää 

stressiin kytkeytyvien reittien selvittämiseen. Mikrosirututkimuksilla on esim. saatu 

selville odottamattomia yhtymäkohtia stressin ja muiden ärsykkeiden (kasvihormoni, 

kypsyminen) välillä, jotka indusoivat muutoksia samojen reittien geenien 

ilmentymisessä. 

 

Uusien kasvilajikkeiden, mukaanlukien GM-kasvit, turvallisuuden arvioinnissa voivat 

olla tärkeitä aineenvaihduntareitit, jotka liittyvät ravintoaineisiin tai kasvin 

perusfysiologiaan. Muita kiinnostavia aineenvaihduntateitä saattavat olla stressiin 

liittyvät reitit, koska tiedetään, että näiden reittien voimistuminen voi johtaa 

ravintoarvoa heikentävien aineiden, esim. luontaisten toksiinien, tuotannon 

lisääntymiseen. Saattaisikin olla järkevää kehittää erityinen elintarvikkeiden 

turvallisuuden arviointiin tähtäävä siru, jossa olisi tunnistimia näille kaikille kolmelle 

kategorialle. 

 

Muita mahdollisesti käyttökelpoisia ‘omiikoita’ ovat proteomiikka eli proteiinien 

analysointi, metabolomiikka eli metaboliittien analysointi, ja ehkä glykomiikka eli 

sokerien analysointi sopivista solukoista. Proteomiikka liittyy läheisesti 

transkriptomiikkaan eli RNA-mikrosiruihin. Koska geenien ilmentymisessä havaittavat 
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erot joudutaan yleensä varmistamaan muilla menetelmillä, on paras tapa todeta 

biologinen vaikutus tutkimalla, näkyykö vastaavia muutoksia proteomiprofiilissa. Tällä 

hetkellä proteomin analysointi on rajoittunut yleensä pieneen osaan proteomia, ja on 

vaikeaa ja työlästä saada lisätietoa mahdollisista muutoksista koko proteomissa. 

Proteomeille on myös kehitteillä mikrosiruja, jotka perustuvat yksittäisten proteiinien 

vuorovaikutuksiin substraattiensa tai toisten proteiinien kanssa. Tämä kehitys voi 

johtaa aikanaan mahdollisuuteen tutkia ’koko proteomia’, jolloin tarve tutkia ensin 

geenien ilmentymisprofiilia vähenee. 

 

Metabolomi koostuu tutkittavan solukon kaikista metaboliiteista ja edustaa korkeinta 

fysiologisten vuorovaikutusten tasoa. Metabolomiikka, eli metabolomin (kaikkien 

aineenvaihduntatuotteiden) tasapuolinen tutkiminen, voi olla arvokas lisä geenien 

ilmentymisen ja proteomin profilointiin, koska sen avulla saadaan tietoa muuttuneesta 

aineenvaihdunnasta, joka on seurausta geenien ilmentymisen tai proteiinien 

tuotannon muutoksista. Nykyisessä metabolomiikassa on sama heikkous kuin 

proteomiikassa, eli vain pieni osa metaboliiteista voidaan tunnistaa yhdessä 

analyysissä. 

 

Glykomiikka on ‘omiikoiden’ uusin, ja luultavasti kaikkein monimutkaisin tulokas, koska 

glykosylaatiopatteri muuttuu jatkuvasti. Tulevaisuudessa tästä menetelmästä voi 

kuitenkin myös tulla arvokas lisä uusien (GM) kasvilajikkeiden hypoteeseihin 

perustuviin riskinarviointistrategioihin. 

 

Yleisenä johtopäätöksenä voidaan todeta, että GM-kasvilajikkeiden kehittämisen 

myötä kiinnostus viljelykasvien koostumukseen on kasvanut nopeasti. 

Profilointimenetelmillä on mahdollista seuloa tehokkaammin eroja uusissa 

kasvilajikkeissa, koska näillä menetelmillä voidaan teoriassa kattaa entistä 

huomattavasti laajempi aineenvaihduntareittien joukko. Mikrosirutekniikan pääetu on, 

että koko genomin kattava geenien ilmentymissiru on lähitulevaisuudessa saatavilla 

ensimmäisille viljelykasveille. Niinpä onkin nähtävissä, että geenien ilmentymisen 

profiloinnilla voidaan tarkentaa nykyistä täsmäanalyyseihin perustuvaa uusien 

kasvilajikkeiden turvallisuuden arviointistrategiaa. Tämä tulee kuitenkin luultavasti 

olemaan vain ohimenevä kehitysvaihe, kunnes saadaan käyttöön 

profilointimenetelmät koko proteomille ja metabolomille. Lopuksi on todettava, että 
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uusien kasvilajikkeiden, olivatpa ne geneettisesti muunnettuja tai eivät, 

terveellisyyteen liittyvien erojen suora toteaminen on mahdollista vain, kun kasvin 

fysiologia ja sen suhde kuluttajan terveyteen ymmärretään kokonaisuudessaan. 
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Chapter 1 Introduction and scope of the report  
 

Until 1997 there were no general European guidelines for the safety assessment of 

newly developed plant varieties. In 1997 the European Regulation on Novel Foods 

and Novel Food Ingredients came into force (EU,1997a). This Novel Foods 

Regulation, as it is generally called, comprises six different novel food categories, 

three of them relating to genetically modified organisms (GMOs) and one related to 

novel plant products that are not GMO-derived. This novel plant product category 

refers to all plant products that were not as such on the European market prior to the 

Novel Foods Regulation coming into force. Therefore, in principle, all new plant 

varieties or products derived thereof that were not yet on the EU market or traditional 

plant products that have been altered substantially, may be considered novel food 

products under this Regulation. The consequence of this may be that novel plant 

products will have to comply with the criteria as set out in the Novel Foods Regulation, 

meaning that the producer will have to compile a dossier to establish the safety of the 

plant products to be marketed. The information required for such a dossier was further 

detailed in the Commission Recommendation with relation to the Novel Foods 

Regulation (EU, 1997b).  

 

This situation has recently been changed. On 22 July 2003 the Regulation on 

Genetically Modified Food and Feed has been adopted, replacing the part of the 

Novel Foods Regulation dealing with GMOs and GMO-derived food products. 

According to the new regulation the evaluation of new GMOs and GMO-derived 

products for food and feed purposes will be performed by the European Food Safety 

Authority along the lines of the EU guidance document for the risk assessment of GM 

plants and derived food and feed.  

 

In all cases a thorough compositional analysis of novel plant products, whether GMO-

derived or not, will be part of the food safety evaluation. As a result of these regulatory 

developments the interest for the development of informative methodologies to assess 

compositional differences has rapidly increased in the last few years. In former days, 

prior to the Novel Foods Regulation, limited methods of analysis were available for 

individual plant constituent compounds, e.g. for specific macro- or micronutrients and 

to a lesser extent for anti-nutrient compounds, such as natural toxins, and natural 
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variation in these compounds was documented in a rather fragmentary way. The 

regulatory developments have boosted research in this area of determining levels of 

food constituent compounds with relation to the safety and nutritional value of 

individual plant products, culminating in a.o. the OECD consensus documents with 

information on key substances for a number of economically important food crops 

(OECD, 2003).  

 

Random insertion of gene(s) can inactivate or change expression of gene(s) already 

expressed, or could, theoretically, activate normally silent gene(s). International 

advisory bodies have therefore discussed since the early 1990s the development and 

evaluation of additional unbiased non-targeted methodologies of analysis that may 

supply additional information on such unpredictable, unintended changes in the plants’ 

physiology that may remain undetected using targeted methods of analysis (OECD, 

1993; OECD, 1996; OECD, 1998; FAO/WHO, 2000). 

 

The non-targeted approach may relate to the transcriptome, the proteome, the 

metabolome, or even the glycome. For all of these cell constituents more or less 

advanced experimental profiling methodologies have been developed (Kuiper et al., 

2002, Kuiper et al., 2003). One of the most promising developments to this end is the 

miniaturisation of well-established molecular biological and biochemical principles in 

the microarray technology. This technology makes it feasible to study differences in 

gene expression, in the transcriptome, on a scale and with a resolving power not seen 

before in the area of molecular analysis. The microarray technology enables the 

screening of significant numbers of different tissues and plant parts for potential 

unintended side effects in a.o. gene expression as a result of the breeding strategy. In 

this way known tissue-specific metabolic networks can be investigated for alterations, 

but also activation of normally silenced pathways in specific tissues or plant varieties 

would not remain undetected.  

 

This report describes the information on gene expression profiles in  plant products as 

obtained with traditional approaches and how the advent of the microarray technology 

has accelerated our insight into the gene expression in plant products that may have 

direct consequences to the way plant products for our food supply are evaluated. The 

report focuses on the different aspects of the application of the microarray technology 
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for the study of gene expression and the bottlenecks related to the large-scale 

application of the microarray technology in this field. Another interesting area of 

research is the use of the microarray technology to identify plant varieties and 

products derived thereof for the purpose of traceability. This field of research is based 

on the profiling of the genomic DNA of individual organisms rather than the mRNA as 

is the target in gene expression profiling. As the questions underlying this field of 

research are only partly related to the characterisation of plant products with relation 

to their safety assessment, the subject of this report, the DNA-profiling for 

identification is considered to be outside the scope of this report . The aim of this 

report  is to discuss and evaluate the usefulness of the microarray technique in the 

safety assessment of genetically modified plants and other novel plants as well as the 

usefulness and possibility for making a database containing profiles of food plants. 

This includes a description of the state of the art, the technical challenges and a 

discussion of a more targeted microarray and the nature of the probes that may be 

relevant for such an array. Although the focus of the report is on GM plants, it is clear 

that the knowledge gained by the profiling of this specific group of novel plant varieties 

and their traditional counterparts may be helpful in the food safety analysis of any 

novel plant variety in the future. 
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Chapter 2 Characterisation of food plants on the RNA 
level  
 

2.1 Comparative approach 
The safety of biotechnology-derived crops is commonly assessed prior to their 

introduction into the field and the market. A consensus approach has been developed 

in international fora organised by a.o. the United Nations’ Food and Agriculture 

Organisation and World Health Organisation (FAO/WHO, 2000; 

http://www.fao.org/english/newsroom/news/2003/20363-en.html), and the 

Organisation for Economic Co-operation and Development (OECD, 1998). 

 

The generally acknowledged approach for assessing food safety of GM plants is 

based on a comparative approach which focuses on the determination of similarities 

and differences between the GM plant and its conventional counterpart. This 

comparison usually comprises phenotype, field behaviour, and composition of the 

crops under investigation. Preferably data are used from multiple locations and 

seasons, to account for environmental, climatological, and geographical influences. 

The assessment of the introduced genes and their products is usually a starting-point 

for the food safety evaluation.  

FAO/WHO (2000), OECD (1996) and EU (1997) have recommended that comparative 

compositional analysis should be carried out on compounds (nutrients, anti-nutrients, 

and toxins) that are characteristic for the crop under study. For this purpose, the 

OECD Task Force on the Safety of Novel Foods and Feed has compiled consensus 

documents describing which crop components are recommended for comparative 

analysis as well as background levels of these components (table 1). At present, 

consensus documents on soybean, canola, maize, sugar beet, potato and wheat have 

been published, while additional documents on cotton, rice, sunflower, barley, forage 

legumes, and tomato are in preparation (OECD, 2003). Another very comprehensive 

information system exist on critically assessed compositional data on bioactive 

constituents (toxicants and health-protective compounds) in food plants and edible 

mushrooms. The database contains 300 major food plants and mushrooms on the 

European market and is based on national databases and data obtained from the EU 

NETTOX (NETTOX 1998) and BASIS projects (Gry et al., 2002; http://www.vfd2.dk/basis/) 

http://www.vfd2.dk/basis/
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In addition, the ILSI / International Food Biotechnology Committee (IFBiC) is currently 

developing a comprehensive database on crop composition that will be accessible 

through the Internet. The data incorporated in the database will be checked for their 

quality with respect to field trial design, sample handling, and analytical methodologies 

used. A first compilation of maize data has been made, which contains data on 95 

analytes analyzed in samples from company field trials that were carried out in 1995-

2000 in US, EU, and Argentina (http://www.cropcomposition.org).  

 

 

Table1. Antinutrients and toxins recommended by OECD for analysis in food.  

 
The larger part of the data on comparisons between GM varieties and their nearest 

comparator is dossier information and not freely accessible for scientific scrutiny. 

However, a number of comparative analyses have been published in the open 

literature. Examples of comparisons are reported in a 1998 Nordic report with data on 

14 cases of GM plants evaluated within Europe (Nordic Council, 1998). An overview 

of literature on the composition of genetically modified crop plants in comparison to 

Crop Product Antinutrient / toxin 

Maize 

 

kernel 

 

phytic acid 

raffinose 

furfural 

ferulic acid 

p-coumaric acid 

Potato 

 

tuber 

 

glycoalkaloids 

allergens (patatin, soybean 

trypsin inhibitor) 

protease inhibitors 

lectins 

Soybean 

 

seed 

 

phytic acid 

trypsin inhibitor 

lectins 

isoflavones 

Oilseed rape Oil erucic acid 

Sugar beet  -- 

http://www.cropcomposition.org/
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traditional varieties until 2000 is provided by Kuiper et al. (2001). From this overview it 

can be seen that most studies are on canola and maize with a limited number of 

studies on potato, rice, soybean, squash, sugar beet and tomato. Most introduced 

gene sequences code for either herbicide or insect resistance. Kuiper et al. (2000) 

includes an inventory of publicly available reports on unintended effects in different 

GM plants (canola, potato, rice, soybean and wheat), that shows that these effects are 

diverse and can not in all cases be directly related to the function of the inserted 

genes.  

 

In addition, several scientific reports provide examples of the comparative 

compositional analysis of commercial biotechnology-derived crops, such as soybeans 

(Nair et al., 2002) cotton (Nida et al., 1996), maize (Ridley et al., 2002; Sidhu et al., 

2000), and potato (Rogan et al., 2000). Regierer et al. (2002) describe transgenic 

potato plants where the activity of plastidic adenylate kinase was modulated. In the 

resulting GM plants a substantial increase in the level of adenylates was observed as 

well as a significant increase in the starch level to 60% above that found in wild-type 

plants and in the concentration of several amino acids. In this case the changes could 

be linked to the modification although the exact mechanism remains to be elucidated.  

 

In general, it is, however, difficult to compare different studies that are performed 

outside the more strict regulatory dossier requirements, as the set-up and analysis of 

individual comparative experiments may differ considerably. Information on 

differences in gene expression in GM plant varieties compared to either the direct 

parent line or any other relevant comparator is thus far limited as the generation of 

gene expression profiles is not part of the food safety evaluation procedure (yet).  

 

2.2.Traditional methods for the detection of differences in gene 
expression.  
 

 ‘Traditional’ methodologies to detect differences in gene expression include a.o. 

Northern blotting (Alwine et al., 1977), where mRNA populations are arranged by size, 

transferred to a filter and hybridised with the probe of interest to investigate the gene 

expression levels of this particular target. Arbitrarily primed PCR (Welsh and 
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McClelland, 1990; Welsh et al., 1992) and differential display (Liang and Pardee, 

1992) are methodologies to amplify specific subsets of the mRNA populations under 

investigation for the purpose of comparison. Differential display has also been used to 

detect altered gene expression in genetically modified plant varieties compared to 

their traditional counterpart (Kok et al., 1998; Kok et al., 2001). Differential display will 

result in the amplification of specific subsets of mRNAs depending on the primer 

design. It was shown that the method is rather labour intensive, has to be repeated 

multiple times with different primer combinations in order to be sufficiently informative 

and is not very well suited for routine application to detect altered gene expression as 

part of a risk assessment strategy.  Other approaches are SAGE (serial analysis of 

gene expression, Velculescu et al., 1995), where cloned concatamerised mRNA-

fragments are sequenced to generate a profile of the mRNA population of interest, 

and the recently developed MPSS (massively parallel signature sequencing) 

technology. Both SAGE and MPSS make use of the combination of cloning cDNA 

fragments and subsequent sequencing. SAGE uses conventional cloning and 

sequencing strategies, whereas MPSS attaches digested, tagged polyA-cDNA 

fragments to beads that are coated with many copies of one out of millions of different 

32-base oligonucleotides, prior to sequencing of the attached molecules. The 

advantage of this approach over the microarray approach is that it may be even more 

unbiased: gene expression using arrays will only provide information on the 

sequences printed on the array, whereas MPSS can give information on the entire 

transcriptome. MPSS is, however, less feasible as a high throughput system and can 

be regarded as complementary to array systems, as long as whole transcriptome 

arrays are still limitedly available, rather than as an alternative (Constans, 2002; 

Brenner et al., 2000). 

 

In general, it can be stated that only in the last decade tools have become available to 

analyse individual plant varieties or derived tissues for differences in gene expression. 

Initial methodologies only allowed the analysis of specific subsets, whereas now the 

microarray technology has made it feasible to analyse the entire transcriptome. With 

this complete of set tools it is possible to select the right tool for any individual 

scientific question. For the purpose of the initial detection of unintended side effects of 

a genetic modification the microarray technology has the obvious advantage of 

enabling the screening of multiple metabolic routes and, possibly, the entire 
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transcriptome. For confirmation of detected differences, however, it will in general be 

advisable to more specifically analyse a single or a limited number of transcript(s).  

 

 

2.3 Stress-related differences in gene expression 
 

Until recent years there was, as mentioned before, a remarkable lack of interest in the 

composition of plants in general, including differences in gene expression. Plant 

breeding strategies were primarily based on other phenotypic aspects. Information on 

gene expression profiles in crop plant varieties is therefore only very limitedly 

available in the scientific literature. An exceptional area in this respect may be the 

stress-related physiological reactions within homeostasis. The issue of stress-related 

reactions in plants is of major importance for agriculture, given the yield-reducing 

impact of various stress conditions (drought, cold, saline, light, pathogens), and has 

therefore been in the focus of agricultural research for a number of years. 

 

Several reviews highlight the state-of-the-art knowledge on gene expression 

influenced by stress in plants, e.g., cold temperatures and freezing (Thomashow et al., 

2001; Ouellet, 2002), salt and drought (Zhu, 2002), as well as UV-B light (Jordan, 

2002). For example, COR (cold-regulated)- and DRE (dehydration-responsive)- genes 

have been identified as stress-related and their activation has been associated with 

increased stress tolerance, such as cold acclimatisation (Thomashow et al., 2001). 

Besides gene expression, post-transcriptional and post-translational modifications of 

transcripts and proteins, respectively, have also been linked to stress tolerance 

(Jordan, 2002; Ouellet, 2002; Zhu, 2002).  
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Chapter 3  Principles of the cDNA microchip 
technology 
 

3.1 The microarray technology 
 

The cDNA microchip or microarray technology is based on miniaturisation of 

methodologies that were already available in molecular biology and biochemistry. The 

technology is based on the same principles for the specific binding of molecules that 

are recognised in a larger pool. For cDNA microarrays the principle is hybridisation, 

i.e. the specific binding of two DNA fragments that have complementary nucleotide 

sequences. This principle of hybridisation has formerly been used in methods for the 

detection of altered gene expression such as Northern or dot blotting, differential 

display and arbitrarily primed PCR, but blotting methods could only analyse single 

transcripts and PCR-based methods can analyse at the most limited subsets of the 

mRNA population in individual experiments.  

 

With the advent of the microarray technology it has become feasible to study the 

larger part of the mRNA population in a single experiment. Where in classical gene 

expression studies the mRNA population was immobilised on a filter prior to 

hybridisation with a single labelled probe, the microarray technology made it possible 

to immobilise thousands of individual probes and screen series of fluorescently 

labelled mRNA populations of interest against those arrayed probes. The technology 

is semiquantitative, i.e. the fluorescent signals can be quantified and relative values 

between different slides can be calculated.  

 

The spotted probes can be of different origins. They can be either newly synthesised 

oligonucleotides or pre-amplified fragments from sequence-identified or anonymous 

cDNA or EST (expressed sequence tag) libraries of any species of interest. EST 

fragments are often obtained using primers with a 5’-amino modification, whereas the 

oligonucleotides are directly synthesized with a similar modification in order to allow 

covalent binding to, for instance, free aldehyde groups on silylated glass slides. 

Oligonucleotide probes are often extended with a (oligo-dT) spacer fragment to avoid 

steric hindrance of the small molecules on the glass surface. Free reactive surface 
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groups (epoxy groups may be used instead of aldehyde groups) on the surface are 

subsequently chemically inactivated to avoid aspecific binding of DNA fragments. 

Franssen- van Hal et al. (2002) showed, however, that an effect of this amino-linker 

due to enhanced cross-linking to the silylated slides could only be observed with short 

PCR products (< 200 bp). Moreover, it was shown that the linker should preferably be 

present on the coding strand. It was also established that single-stranded DNA 

instead of double-stranded DNA will be more sensitive mainly due to the fact that 

more coding strands with the capacity to bind the labelled cDNA will be present in the 

spot. Finally, it was shown that redundancy in specific gene fragments in different 

spots should be avoided in order not to dilute the signal of the specific transcript 

product.  

 

Following the fact that on microarrays the probes are immobilised, it is clear that the 

immobilised probe set determines the information that can be obtained using a 

specific array, whether this is a oligonucleotide or a cDNA array. It is therefore crucial 

to use array systems that will be able to provide the information that is sought after 

when designing an array experiment. This is less obvious than it may seem at first. 

Especially in the area of cDNA or EST arrays there are no arrays (yet) available that 

cover entire transcriptomes of individual (crop) plant species. The arrays that are 

available (table 2) contain ESTs or cDNAs of specific tissues of the plant in specific 

developmental stages. The information related to the spotted probes should be 

analysed carefully before designing experiments that aim to elucidate metabolic 

pathways in specific plant tissues. If the tissues were not included in the setting up of 

the libraries underlying the spotted probe set, it may well be that the information that 

can be obtained from the array is insufficient and it would be advisable to follow other 

routes (as well) to meet the aims of the project.  

 

As the microarray technology is based on hybridisation of complementary strands 

there is the possibility that other mRNAs with a high level of homology with the probe, 

e.g. different members of the same gene family, will crosshybridise. It may be very 

difficult to distinguish similar mRNAs, especially if they function in the same metabolic 

pathways. This is also the case for fusion proteins as a result of the genetic 

modification: the derived mRNA may hybridise in the same way compared in the wild 

type if the homologous part is of sufficient length. Related effects to the plant’s 
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physiology may, however, be detected. It is estimated that sequences with over 70% 

sequence homology over more than 200 nucleotides are likely to crosshybridise to 

some extent under standard conditions (Kane, 2000; Xu et al.; Richmond and 

Somerville, 2000). 

 

Plant Array description Institute/company Academic/industrial

Arabidopsis 

Thaliana 

>24.000 genes, 25mer 

oligos, 11 oligos per 

gene 

Affymetrix Industrial 

Arabidopsis 

Thaliana 

21.500 genes, 60mer 

oligos 

Agilent Industrial 

Arabidopsis 

Thaliana 

26.090 genes, 70mer 

oligos 

Qiagen Industrial 

Barley 53.030 genes, 25mer 

oligos, 11 oligos per 

gene 

Affymetrix Industrial 

Maize 4.800-5.700 unique 

cDNA clones 

Iowa State 

University & 

Arizona University

Academic 

Potato 10.000 unique cDNA 

clones 

TIGR Academic 

Rice, in 

combination with a 

rice blast fungus 

13.500 fungus genes 

(complete genome), 

7.000 rice cDNAs, 

60mer oligos 

Agilent industrial 

Tomato 12.000 ESTs Cornell University,  

USA 

Academic 

 

Table 2. Commercially available plant microarrays 

 

It is also essential to have some insight into the kinetics of hybridisation events in 

order to be able to optimally interpret the resulting data from an hybridisation 

experiment.  
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Richmond and Somerville (2000) distinguish three types of microarray experiments: 

1)_marker discovery experiments, to discover a limited number of highly specific 

marker genes for a specific cell type, stage of developmental or environmental 

condition; 2)_biology discovery experiments where expression information on all 

genes provides an integrative view of gene expression under the selected conditions; 

and 3)_gene-function discovery experiments which may be in silico experiments to 

use existing data to find additional information on the function of a specific gene on 

the basis of the expression profile under a range of different conditions. For the 

purpose of the safety assessment of GMO-derived plant products microarray 

experiments type 1 and 3 will likely be most relevant. Type 1 can either be based on 

hybridisations to a whole transcriptome array or to a focused array to detect 

unintended effects of a genetic modification on gene expression profiles. Type 3 

experiments may be informative to assess the biological relevance of detected 

differences by comparing the results to similar experiments in comparable varieties. 

All type of experiments in the end determine ratios of expression for the individual 

genes spotted under the selected conditions in order to gain insight into physiological 

processes that were hitherto part of plant ‘black box’. 

 

The DNA microarray approach to analyse metabolic pathways in plant physiology has 

the potential to elucidate complex pathways that could never be revealed with the 

former single or limited gene approaches. The potential to this effect was first shown 

in the medical and microbiological area (Alizadeh et al., 2000), but has already shown 

its value also in the plant and food sciences (Aharoni et al, 2002; van Hal et al., 2000; 

Schaffer et al., 2000; Schenk et al., 2000, Maleck, 2000; Aharoni and Vorst, 2002). 

This will not only allow breeders to develop new plant varieties with improved 

characteristics by means of genetic modification, but may also improve the 

possibilities of marker assisted selection (MAS), early in the plant breeding schemes. 

This may be especially beneficial in the case of ‘slow’ growing plants and trees, 

thereby speeding up the breeding programmes for this type of crop species 

considerably (Schaffer et al., 2000). Other recent developments in DNA microarray 

technology, but outside the direct scope of this report, is the arraying of a gene 

expression cell system in order to rapidly identify gene products and their function 

(Ziauddin and Sabatini, 2001) and  TSAA, translational state array analysis, a mRNA 

micro-array technique that discerns translated from non-translated mRNA based on 
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centrifugal separation of translated mRNA bound by many ribosomes and from poorly 

translated mRNA bound by few ribosomes in density gradients (Serikawa et al., 2003). 

 

Finally, it should always be kept in mind that gene expression analysis by 

oligonucleotide or cDNA/EST arrays will in general only give indications on specific 

genes being related to unintended effects in specific pathways/ responses/ 

developmental stages etc. Only in very specific cases will statistical analysis of the 

microarray results give full evidence for differential gene expression of an individual or 

cluster of genes. Usually additional techniques will be required to confirm the 

observations by e.g. real time PCR or Northern blotting experiments and test the 

biological relevance of the measured differences by investigating the effects on 

protein or metabolite level. Final confirmation of the function of a not yet annotated 

gene may require other approaches, such as (bio)chemical analyses or the creation of 

(knock-out) mutants for the specific gene under investigation.  

 

 

3.2  Technological developments 
 

The microarray technology is still very much in development. Initially only two types of 

arrays were available. First of all the arrays where oligonucleotides are synthesised on 

a solid support, especially the Affymetrix system. By this in-situ synthesis very high 

densities of the oligonucleotides can be achieved, up to 250.000 spots/cm2. For 

individual cDNAs 15 to 25 matching and (single-)mismatching oligo’s are spotted to 

confirm any detected sequence (Lockhart and Winzeler, 2000). The second often 

used type of array is the array where either oligonucleotide or cDNA sequences are 

presynthesized pre-amplified and then spotted in array format. The oligonucleotides 

spotted in this way may be longer compared to the Affymetrix array, but usually do not 

exceed 70 bases.  

 

There are, however, other developments in the area of the microarray technology, 

e.g.: 

 Three-dimensional array systems, e.g. PAMgene arraysystem where DNA probes 

are attached inside the tunnels of a microporous material. Sample cDNA is 

pumped up and down through this material several times to facilitate the 
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hybridisation process. cDNA will hybridise to the probe and can be detected 

accordingly (http://www.pamgene.com/index-ie.html). 

 Signal enhanced fluorescence arrays: the system is based on metal nanocluster 

layers between the solid surface and the cDNA probes. The bound fluorescent 

cDNA molecules are at such a distance of the nanocluster that the fluorescence is 

enhanced up to 200 times (Stich et al., 2001). 
 Nanosphere technology: DNA fragments are hybridised to immobilised probes on 

the solid surface. In a second hybridisation step specific oligonucleotide probes 

that are linked to minuscule gold particles hybridise to the bound DNA fragments. 

The bound gold particles are then visualised through a reaction with silveriodide.  

A recent variant on this method uses the conductivity of the silver and gold 

molecules to generate an electric signal when the electrodes surrounding the 

spots are connected. The generated signal is measured and this approach 

increases the sensitivity of the approach significantly (Park et al., 2002). 
 Suspension array technology: internally labelled fluorescent microspheres that are 

coated with oligomeres can bind labelled DNA target fragments. A mix of 

microspheres is allowed to hybridise with sample DNA and subsequently analysed 

by flow cytometry or optic fiber cables (Nolan and Sklar, 2002). 
 Bead array counter (BARC): target DNA binds to DNA probes coated on magnetic 

beads. A second DNA probe attached to a magnetoresistive sensor also binds the 

target DNA. Bringing the magnetic beads in close proximity a signal is detected 

(Edelstein et al., 2000) 
 Nanochip technology: probes are attached to spots with underlying electrodes. 

DNA is electronically directed to the spot to allow for hybridisation. A second 

fluorescent probe is passively hybridised to the bound target DNA in the spot 

(http://www.nanogen.com).  
 

There are also important developments in relation to the materials that can be 

hybridised to the array. A bottleneck in this respect is often the amount of mRNA that 

is needed for a hybridisation experiment. A solution may be here to use total RNA 

(totRNA) samples as it has been shown that relatively small amounts of totRNA are 

necessary for hybridisation compared to the amount of mRNA that is needed for a 

hybridisation and would be obtained from a much larger quantity of totRNA. This may, 

however, in many cases not be sufficient to solve the problem of RNA quantities. The 
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combination of developments with relation to the possibilities of excision of selected 

single cells out of a tissue and reliable and reproducible amplification of the mRNA 

population that can be isolated from the cell is likely to make more specific 

hybridisation experiments feasible in the near future. It seems that the sensitivity of 

the technology will not be the limiting factor as it has been calculated that EST 

microarrays are able to detect one fragment in a pool of 100.000 – 500.000, enabling 

to detect mRNAs that are present in only a few copies per cell (Richmond and 

Somerville, 2000; Zhu and Wang, 2000).  

 

 3.3 Potential and bottlenecks of the technology 
 

By using the DNA microarray known metabolic networks can be investigated for 

alterations in gene expression, but, depending on the metabolic routes represented on 

the array, also activation of normally silenced pathways in specific tissues or plant 

varieties could be detected. For the food safety assessment preferably edible as well 

as non-edible parts of the novel plant varieties should be tested as newly formed 

substances may be transported between tissues and plant parts.  

 

Thorough elucidation of the relations between genes, proteins and metabolites will 

greatly enhance the power of microarray analysis in this respect. One point of 

consideration is that after mRNA expression, several mechanisms can influence the 

level of protein that is formed from the mRNA-borne genes. In other words, mRNA 

levels may not be representative of the protein levels finally formed. This is due to 

several factors that are known to affect the translation process that builds the amino 

acid sequences of nascent proteins from the open reading frames of the mRNA. 

Analyses conducted in yeast have shown a very poor correlation (coefficient < 0,5) 

between mRNA and protein levels (Pradet-Balade, B. et al 2001 and Washburn, M.P. 

et al. 2003). The time necessary for the translation of mRNAs into proteins may vary 

and this may result in a delayed shift in the proteome or metabolome compared to the 

transcriptome. Translation depends on the binding of various ribonucleic and 

proteinaceous molecules to the mRNA chain (Gallie, 2002). This process of 

translation initiation can be influenced, for example, by (temperature) stress in plants. 

Examples are furthermore known where upstream sequences influence the translation 

levels by two till three orders of magnitude (Meijer and Thomas, 2002). 
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Another well-known factor that contributes to translation efficiency is "codon bias", 

given that different codons that encode the same amino acid may not be translated 

with the same efficiency. Codon preference may vary between organisms, and will 

differ, for instance, between bacteria (AT-rich sequences) and plants (CG-rich 

sequences) (Nakamura et al., 2000). 

 

In order to be able to apply the full potential of the microarray technology, it is 

necessary to very carefully design an array experiment. The wealth of data that will 

result from any microarray experiment makes it crucial to think very carefully about the 

experimental setup taking into account statistical considerations as well as practical 

limitations of the available arrays and samples for RNA isolation. Also aspects of data 

storage and analysis should already be considered prior to the experiment in order to 

prevent data loss and to be able to include e.g. the right references and not lose time 

afterwards by undirected data computing.  

 

3.4. Sampling 
 

The quality of the mRNA populations under investigation is crucial for the information 

that can be obtained. It is therefore necessary to determine the quality of the isolated 

RNA fragments both spectrophotometrically as well as by gel electrophoresis. The 

ratio values that can be obtained by spectrophotometric analyses will give information 

on the purity of the sample whereas gel electrophoresis will show the intactness of the 

RNA fragments. The mRNA populations under investigation can be labelled either by 

direct incorporation of fluorescently labelled nucleotides during a reverse transcription 

reaction or indirectly where either a reporter molecule is bound to the nucleotide 

analog that is incorporated in the initial reverse transcription phase or by attachment 

of reactive molecules to the backbone of the unlabelled RNA molecules. Alternatives 

to the indirect approach combine the two-step procedure with subsequent signal 

amplification strategies (Adler et al., 2000). Labelling two experimental mRNA 

samples with different fluorescent dyes with distinctive excitation and emission 

characteristics allows direct comparison of the two samples on a single slide. A 

second experiment with reversed labelling conditions (dye swap) should preferably 

confirm the results. For comparison of larger series of samples it will in general be 
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necessary to use multiple slides and to apply a procedure that allows for the 

correction of differences between slides and/or hybridisation conditions. Because the 

quality of the (tot)RNA is very important standardisation of protocols used is required 

(Zhu and Wang, 2000). 

 

As long as such ‘precision’ hybridisation is not yet routinely applied, it should be kept 

in mind that the mRNA will usually be derived from complex tissues. It is therefore 

crucial to perform comparison microarray studies with very similar testing materials 

that are fully  

homogenised in order to facilitate interpretation of the results or as Richmond and 

Somerville (2000) put it: the resolving power of each microarray experiment will be 

determined by the biological variation in the plant samples and the technical variation 

associated with the microarray technology. 

 

An important limitation in many tissues/products will be the isolation of sufficient 

mRNA molecules of sufficient quality for hybridisation to informative arrays. As stated, 

characterisation of mRNA populations of small-sized tissues will in general require an 

mRNA amplification step prior to the array-based characterisation, unless sufficient 

similar samples can be pooled to obtain the amount of mRNA required for a 

hybridisation series.  

 

The same goes for foods and food products. The mRNA has to be of high-standard 

quality in order to be able to compare two subsequent samples. As slightly different 

conditions in the food or food product will in general have large effects on the quality 

and quantity of the mRNA that can be isolated, it is highly unlikely that the application 

of the microarray technology in processed products will become standard for their 

characterisation and/or safety evaluation. At most it may be an additional tool for the 

evaluation of less-processed products where high quality mRNA can be isolated and 

characterised.  

In order to relate individual microarray experiments to each other it will be necessary 

to use references. Three alternative strategies can be applied: 

1) Individual reference spots/genes on the array that are known to be similarly 

expressed under the conditions under investigation. To this end such genes  
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must have been identified and the internal control spots should be manifold on 

the array or local differences within the array can not be controlled for; 

2) A reference mRNA sample that is used on all microarrays of an experimental 

series where a different fluorescent dye is used to label the mRNAs under 
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investigation prior to hybridisation on the same series of arrays. This reference 

sample may be an additional sample or a pool of samples or a mix of all 

samples to be analysed.  

These approaches are more or less experiment-specific and may result in a 

considerable number of negative reference spots, which may mean loss of 

experimental spots that can adequately be analysed. An alternative has been 

published by Sterrenburg et al. (2002). They propose 

3) to use cRNAs of all spotted PCR products as an alternative common 

reference. Prior to labelling the PCR products are transcribed into single-

stranded cRNA molecules and simultaneously amplified. Labelling can thus 

take place parallel to the labelling of the experimental sample. This approach 

results in high numbers of positive reference spots, reducing the loss of 

experimental data. In this way correction factors can be established for every 

individual spot of the array by comparing the signal obtained with the reference 

mRNA sample.  Finally,  

4) normalisation can be based on the fact that the overall expression between 

samples is not likely to change much. A correction factor is in this case 

determined by the overall fluorescent value.  

  

3.5 Data analysis 
 

Data analysis of microarray experiments is usually performed by the subsequent steps 

of quantification of the fluorescent signal, normalisation of the obtained data and data 

visualisation and interpretation. Quantification of the signal is performed with image 

analysis software programmes that can detect individual spots, have the possibility to 

exclude specific inferior spots and can calculate and subtract the background value for 

every individual spot. Background values can be determined in different ways that can 

include more or less background signal information from the area around either the 

spot, the block of spots or the entire array area. In general, it seems preferable to take 

a well-established background value on the basis of the fluorescence around the spot 

of interest, but this requires well-characterised spots with sufficient space in between 

to determine a background signal. Spots with signals below the background are 

generally discarded. Usually the image analysis software also has the possibility to do 

some limited data analysis and visualisation of the results. These programmes are still 
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in development and the possibilities for the user increase to decide on the optimal way 

to analyse the array results. 

 

Normalisation of the data, in order to compare arrays with each other can be 

performed in different ways as explained at the end of section 3.4. Comparisons 

between different ways of linear normalisation in specific datasets may not show large 

differences in the resulting data analysis (Richmond and Somerville, 2000). More 

recent optimised alternative approaches use non-linear intensity-dependent methods 

for normalisation (Workman et al., 2002; Yang et al., 2002). Of interest is also the 

website of the Microarray Gene Expression Data Society (MGED) on normalisation 

(www.dnachip.org/mged/normalisation.html). 

 

For microarray data visualisation and interpretation, different analysis tools are used 

to find the most relevant differences or resemblances in gene expression patterns, 

depending on the questions underlying the microarray experiment. When working with 

large datasets, as is the case with microarrays, simple interpretation of the data is not 

possible. In order to come to meaningful interpretations global insight in the structure 

of the data must be obtained first, followed by validation of the preliminary results. For 

the first part two main types of analysis tools are available, unsupervised and 

supervised methods.  

 

Unsupervised methods look for trends or patterns in the dataset. They are of an 

exploratory nature and are most useful when differences are to be found, but when 

the nature of the differences is not known beforehand. This will usually be the case 

when, for instance, newly developed GM crops are investigated and compared to 

traditionally bred lines. Examples of unsupervised methods are cluster analysis, 

principle component analysis (PCA) and self-organising maps (SOMs). 

 

Many forms of cluster analysis are available. Most software packages for microarray 

analysis offer clustering algorithms that use hierarchical clustering methods. This 

means that the algorithm looks at the samples as individuals. On the basis of the 

measured variables the similarity between individuals is calculated. Individuals that 

show high similarity are then grouped. Subsequently, groups of individuals are further 
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grouped together on the basis of similarity between groups, and so on until no more 

grouping can occur. The result is shown as a dendrogram (figure 2). 

 

 

 
 

 

 

 

Figure 2. Example of a hierarchical clustering dendrogram. In this example the duplo 

experiments are clustered together. Sample A is most distinct from samples B, C and 

D. Within that group, C and D are most similar. 

 

To explore which genes are correlated with this clustering of samples, the same 

algorithm is applied on the genes that were measured on the array. Genes with similar 

expression patterns will then be clustered together. Interpretation of the resulting data 

to come to plausible explanations in a biological sense will always be the final step.  

A number of options are available both for the way the distances, or similarities, 

between data points are calculated, as well as for the algorithm that groups the 

distances or similarities in clusters. For datasets that have distinct, clear features, 

most methods will produce similar dendrograms. However, if the differences are 

marginal compared to the noise in the dataset, different methods can produce quite 

different results. Insight into the matter of investigation, or additional experiments, will 

then be decisive for a meaningful interpretation. 

 

PCA is a way to reduce the number of dimensions of a dataset while retaining as 

much of the variation as possible. If in a dataset 30 genes are measured, the dataset 

has 30 dimensions. The number of components is 29. In most datasets the first ten 

components will explain more than 90% of the variation, even if several thousand 

genes are measured. PCA calculates the components so that they explain the 

variation between the samples of the dataset, the first component explains the larger 

part of the variation, then the second, and so on. Each component consists of a series 

of numbers that act as weights for all the different genes. In the first component the 

highest weights are assigned to the genes that differ most between the samples of the 

sample A 
sample A, duplo 
sample B 
sample B, duplo 
sample C 
sample C, duplo 
sample D 
sample D, duplo 
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dataset. In the second component different weights are assigned, explaining as much 

of the remaining variation as possible, and so on. The major advantage of PCA is that 

differences in the dataset can be viewed at different levels. The first component of 

PCA can be compared with the results of a dendrogram in cluster analysis, but in 

addition in PCA the second and third etc. components can also be viewed, which is 

not possible with hierarchical clustering (figure 3). However, the interpretation of a 

PCA is also more intricate. First of all, the component that best separates the groups 

of interest has to be identified; this is not necessarily the first component. Then the 

genes have to be sorted according to the weight that was assigned to them in that 

component; these are likely to be the most interesting genes involved in the 

experiment. Understanding all the components and the variance they explain, may not 

always be feasible, and sometimes not even relevant. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Example of a PCA analysis on the expression profiles of six samples (duplos 

of ,  and ). Plotted is the first component (X-axis) against the second component 

(Y-axis). Genes that are important in the first component separate the  samples from 

the  and  samples. Genes that are important in the second component separate 

the  samples from the  and  samples. 

 

 

A SOM is an example of an artificial neural network (ANN). An ANN is an algorithm 

that is loosely based on the spatial organization of the human brain. In a SOM, the 

experiments can be divided in a user-defined number of nodes. Experiments that are 

most similar will be placed in the same node. In most software the variation in each 

node can be viewed, in order to see if this grouping is meaningful. The interpretation 
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of which genes are most important for the grouping is less transparent than for PCA 

and clustering. 

 

Supervised methods are more useful for diagnostic types of analysis than for 

exploratory purposes and are less likely to play an important part in the evaluation of 

the food safety of GM crops initially. Supervised methods of data analysis involve the 

training of an algorithm with a number of different, well-established samples. The 

training is an iterative process, increasing the discriminative power of the algorithm 

with each round of training. The trained algorithm can then be applied to new datasets 

in order to determine the category of these test samples. This means that a number of 

conditions should be met in order for supervised methods to work. First of all, a 

substantial number of samples must be available with sufficient details regarding 

measured data and categorisation. There must be three sufficiently large sets: a 

training and a validation set for the training of the algorithm, and an independent test 

set to test the algorithm once it is trained. In all these sets all the groups must be 

present. Secondly, the variables that are measured must be able to distinguish the 

groups of interest. For instance, to determine the tissue identity of a particular 

unknown plant sample, the array must contain sufficient tissue-specific probes for the 

purpose. A known caveat for supervised methods is to know when to stop training the 

algorithm: too few rounds will decrease the discriminative power, while too many 

rounds result in training on the noise in the training set; this results in less 

discriminative power when unknown samples are analysed. A good supervised 

method should report on the predictive power of the algorithm that is the result of the 

training (percentage of false positives and negatives). Examples of supervised 

methods are Discriminant Function Analysis (DFA), Decision Tree Learning (DTL), 

Artificial Neural Networks (ANN) and Evolutionary Computing and the number of 

supervised methods is still increasing. 

 

In general, any differences between samples that are found with these methods, 

especially unsupervised methods, should be considered potential differences. 

Therefore, the last part of data analysis must always be validation of some sort. If 

different approaches on analysis detect the same differences, chances are increased 

that these differences are significant between the groups of interest. However, it will 

always be necessary to go back to the raw data and perform statistics on the number 
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of potential differently expressed genes. Methods for this are ANOVA (analysis of 

variance) and univariate analysis. However, much debate is ongoing regarding the 

right statistical approach for microarray experiments (Hess et al., 2001; Nadon and 

Schoemaker, 2002;  Becker, 2001). One of the major problems is the few samples 

analysed compared to the large number of variables (genes). Specific statistical 

routines will have to be developed to overcome this and other problems.  

 

From this overview it is clear that the number of ways to analyse a set of thousands to 

millions of microarray data of a single experiment is sheer endless and this further 

underlines the necessity to also include the aspect of data analysis in the preparation 

of any microarray experiment.  

 

3.6. Data storage 
 

Data storage is essential throughout the data analysis route. It is clear that a good 

database design is crucial for the ability to use the wealth of data that will already 

result from a single experiment for future analysis. Furthermore, if the same 

(commercially available) array is used by many research groups this can be seen as a 

common experimental platform. If the results obtained with this array are stored in a 

centralised database, an in silico analysis of the available data may reduce the 

number of experiments that need to be actually carried out (Kehoe et al., 1999). 

Initiatives to come to harmonised approaches for microarray databases have already 

been launched (MIAME, Brazma, 2001; Brazma et al., 2001).  

 

A timely setting up of informative databases is very important also in the light of the 

fact that (statistical) data analysis tools for microarray experiments are still very much 

in development. At this moment we can therefore only extract limited information from 

individual experiments and from the combination of different microarray experiments. 

With the progressing development of statistical microarray data analysis tools we may 

be able to use the experiments of today to solve the questions of tomorrow. It is also 

clear that to this end the current way of communicating research results will have to 

be revised. At this moment the results of (functional) genomics sequencing 

programmes and microarray experiments are already published for the larger part on 

the internet, with only summaries of the results in conventional scientific publications. 
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It is feasible that publicly accessible databases will become more and more an integral 

part of (electronic) scientific publications. The Microarray Gene Expression Data 

Society (MGED, http://www.MGED.org) is an international group of scientists that 

aims to facilitate the sharing of microarray data generated by functional genomics and 

proteomics experiments. The current focus is on establishing standards for microarray 

data annotation and exchange, facilitating the creation of microarray databases and 

related software implementing these standards, and promoting the sharing of high 

quality, well annotated data within the life sciences community. 

 

A long-term goal of the group is to extend the mission to other functional genomics 

and proteomics high throughput technologies. At the moment the MGED is organised 

in four workgroups:  

1) MIAME (minimal information about a microarray experiments) aims to formulate the 

minimum information about a microarray experiment required to interpret and verify 

the results; 

2) MAGE aims to establish a data exchange format (MAGE-ML) and object model 

(MAGE-OM) for microarray experiments; 

3) Ontologies (OWG, object working group) develops ontologies for microarray 

experiment description and biological material (biomaterial) annotation in particular;  

4) Transformations develops recommendations regarding microarray data 

transformations and normalisation methods. 

 

Recently, a number of scientific journals have made it compulsory for articles 

presenting microarray data to be MIAME compliant, indicating the importance of the 

MGED initiative. MIAME has two major sections: 1) array design description and 2) 

gene expression experiment description. The array design description deals with the 

description of the array as a whole and of each individual spot on the array. The gene 

expression experiment description was designed to provide relevant information on 

any set of microarray data that are related to each other, as is the case for arrays in a 

single experiment or article. Items for which information should be provided are: 

-experimental design; e.g traditional vs. GMO comparison, number of hybridisations, 

number of replicates, the use of a common reference or not etc. 

-samples used, extract preparation and labelling; detailed description of the 

experimental samples used, including method of isolation and labelling. 
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-hybridisation procedures and parameters; for instance, the composition of the 

reaction buffer, the blocking agent, the wash procedure, hybridisation conditions etc. 

-measurement of data and specifications of data processing; providing information on 

the hardware and software used to generate the raw data, the raw data itself, the 

subsequent analysis, including quantitation and normalisation, and the software used. 

 

The MGED internet site contains more information about the workgroups as well as 

links to publicly or commercially available databases for review or submission of 

microarray experiments as well as software for data analysis. MIAME was not 

intended as a rigid set of rules, but more as a set of guidelines, ensuring a minimum 

quality of microarray information when adhered to. As a result, many different forms of 

information about microarray experiments can be MIAME compliant. One example is 

MIAMExpress, a software tool publicly available via the European Bioinformatics 

Institute (http://www.ebi.ac.uk), and designed for public storage of microarray data. 

MIAMExpress is MIAME compliant and the scheme for the submission of data gives 

an overview of the MIAME criteria (figure 4). Future development will have to prove 

whether the public sharing of data is feasible and if the self-regulatory capacities of 

the scientific community are good enough for transparent and uniform presentation of 

the vast amounts of data that are being generated. The human genome project and 

public databases such as the one of the NCBI are good examples of successful efforts 

of public data storage. There are many more public databases that contain information 

on specific genes or proteins, focussing on different species, metabolic pathway, 

disease types etc. An overview of these databases was published in a special issue of 

Nucleic Acids Research (volume 31, issue 1, 2003), also available online 

(http://nar.oupjournals.org/content/vol31/issue1/). 

 

Finally, it becomes increasingly important that microarray databases are directly linked 

to comparable databases of the other ‘omics’ technologies, as it is likely to become a 

standard approach to investigate metabolic pathways of interest simultaneously by 

different technologies, in order to be able to make optimal progress in the elucidation 

of the pathwaysIt is therefore important to start thinking already on the compatibility of 

initiatives such as of the MGED with other initiatives that aim to develop similar 

systems for NMR and/or MS data, for instance an initiative in the British FSA G02 

http://nar.oupjournals.org/content/vol31/issue1/)


 49

Figure 4   Example of the information required for MIAME compliant submission and 

publication of microarray data. The example shows the flowchart of the MIAMExpress 

software (publicly available) for the public storage of microarray data, developed by 

the European Bioinformatics Institute (EBI), and available on their website 

(http://www.ebi.ac.uk). 

 

programme (http://www.foodstandards.gov.uk/science/research/NovelFoods 

Research/g02programme/g02projectlist/g02006). Although linkage will be a huge task, 

the advantages for the (food safety) analysis of novel plant varieties are evident as it 

is unlikely that the assessment will in the end be based on a single methodology.   

http://www.foodstandards.gov.uk/science/research/NovelFoods
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Chapter 4  Past and present experiences with the use 
of cDNA microarray technology in plant varieties 
grown under different (environmental) conditions  
 

4.1.Model systems  
 

The plant that has been most often used as a model system for all ‘omics’ applications 

so far is Arabidopsis thaliana (Meinke et al., 1998). This is a weed that can be found 

all over the world and can easily be grown and transformed and is therefore ideal for 

genetic experiments. For ‘omics’ applications the additional advantage is that the 

genome is relatively small (130 M bp). It was the first plant genome to be fully 

sequenced (The Arabidopsis Genome Initiative, 2000). Functional analysis of the 

annotated genes shows that approximately half of the gene sequences could not be 

annotated, a quarter of all genes are believed to be involved in metabolism, 

transcriptional and cell growth and division –related activities, with the rest being 

related to other areas of cell activity. The collection of Arabidopsis cDNAs and ESTs is 

also one of the largest plant collections that are currently available and large research 

projects aim to elucidate the function of the identified genes, e.g. by large-scale 

insertional mutagenesis (Parinov and Sundaresan, 2000; Pereira, 2000, Rudd et al., 

2003). For monocotyledonous plants rice has become the model system. The genome 

size of rice is 400 M bp (Zhu and Wang, 2000). The TIGR rice genome annotation 

resource provides a very valuable and extensive source of information on the rice 

genome as well as on ESTs from the important rice subspecies japonica and indica 

(Yuan et al., 2003; http://www.gramene.org/). The japonica-ESTs are mainly derived 

from GenBank, whereas the indica-ESTs are mainly derived from the Beijing 

Genomics Institute (BGI).  

 

An informative overview of the use of microarrays in plants until 2001 is provided by 

Aharoni and Vorst (2001). From their overview it is clear that for almost all array 

experiments described thus far EST arrays were used, for the larger part Arabidopsis 

arrays, and in addition a limited number of arrays with rice, beans, maize, strawberry 

and Petunia ESTs. Furthermore it is shown that most array experiments relate to 
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experimental exposure to different environmental conditions, or to the analysis of 

differential gene expression as result of different types of mutagenesis strategies. 

 

In rice microarray experiments were performed with relation to salt stress. A 

microarray was constructed with 1728 cDNA probes that were derived from cDNA 

libraries of salt-stressed roots. Hybridisations with series of samples that were taken 

at different time-points after a salt shock showed that differences in gene expression 

could already be detected after 15 minutes, peaking within one hour after the stress 

was applied in 10% of the selected transcripts (Kawasaki et al., 2001).  

 

Tomato has been the model system of choice to study fruit ripening. Very important in 

this respect has been the availability of a number of well-characterised ripening 

mutants. To this end a large library of non-redundant EST clones has been generated 

at TIGR (The Institute for Genomic Research, Tomato NSF (National Science 

Foundation USA) EST project http://www.tigr.org/tdb/lgi) of approximately 28.000 

clones. Experiments were performed with probes isolated from ripening tomatoes at a 

time-course spanning fruit development from 7 days post-anthesis to 15 days past 

breaker (first yellowing of the tomato) stage (Moore et al., 2002). Expression ratios in 

different stages of ripening were determined for four sequences known to be involved 

in tomato ripening. Ratios were shown to be the highest between the green and 

breaker  stage of ripening.  

 

The Institute for Genomic Research (TIGR) has developed a large potato EST library 

with sequences derived from nine different potato plant part libraries as well as 

libraries obtained after exposure to the late-blight pathogen (Phytophthora infestans) 

(Ronning et al., 2003). From over 60.000 EST sequences 19.892 unique sequences 

could be identified. For 43.7% of these sequences a putative function could be 

identified and 48 were found to be expressed in all nine libraries, indicating that these 

are constitutively expressed or ‘housekeeping’ genes. 21% of the sequences were 

uniquely expressed and detected only in a single library. Comparison of the potato 

EST library with TIGR Tomato Gene Index which is composed of over 150.000 tomato 

EST sequences showed that depending on the stringency applied,70-80% of the 

unique sequences showed sequence similarity. 

 

http://www.tigr.org/tdb/lgi
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4.2. Identification of stress-related genes in plants by use of 
microarrays  
 

The application of microarray technology to identify stress-related genes in plants is 

comparatively young and is starting to take shape. In the pioneer study of Schenk et 

al. (2000), microarray analysis has been performed on Arabidopsis under various 

stressful conditions induced by fungal infection (Alternaria brassicola) and plant 

hormones (salicylic acid, methyl jasmonate, or ethylene). These authors found that 

705 out of the 2375 spotted genes respond to one or more treatments by up- or down-

regulation, while 169 mRNAs were regulated by multiple treatments. The results of 

this study therefore show that a number of differentially expressed genes are involved 

with multiple stressful conditions. A number of reports on microarray analysis of gene 

expression plants exposed to stress have subsequently appeared, such as by Maleck 

et al. (2000), who identified groups of genes with common regulation patterns under 

14 different conditions that would either induce or repress plant disease resistance 

mechanisms. Two reviews highlight the progress and prospects of microarray 

technology for investigation of differential expression induced by stress, in particular 

during plant defence (Reymond, 2001) and drought (Bray, 2002). In addition, 

examples of recent studies are summarised in the Table below. 

 

As mentioned above, various classes of genes are known to be involved with either 

systemic or local stress-induced response by plants, covering a wide array of specific 

cellular functions (e.g. detoxification, metabolism, transport) and transcriptional 

regulation. By microarray analysis, it has been confirmed that the expression of these 

known genes, but also many novel- or previously unrelated- genes are affected by 

stressful conditions (Bray, 2002, Reymond, 2001). 

 

Also the studies summarised in table 3 have shown the added value that microarrays 

have in elucidating the involvement of specific genes/pathways in stress-response. 

Rossel et al., (2002) and Chen et al. (2002) both describe, for example, that specific 

promoter elements are associated with a number of stress-induced genes. In two of 

the summarised studies, stress-responsive genes have been identified that are 

similarly affected under multiple (2) stressful conditions, which further corroborates the 
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specific relationship with stress (Swidzinski et al., 2002; Ozturk et al., 2002). In one 

case, stress-responsive genes show cross-relationships with ripening (Aharoni et al., 

2002). In another case, gene expression affected by diurnal variation could be 

discerned from that affected by stress (Negishi et al., 2002). 

 

Plant hormone-responsive genes are also stress-related under the various conditions 

of stress investigated in the studies listed in table 3 and previously reviewed 

(Reymond, 2001). In barley, for example, jasmonic acid- responsive genes are active 

after 6 hours of drought, while absisic acid-responsive genes become active after 10 

hours (Ozturk et al., 2002).  

 

Transcriptional factors are also included in many microarray-supported studies of 

stress-response in plants. Chen et al. (2002), for example, have constructed 

microarrays of probes specific for transcriptional factors. As the results show, these 

transcriptional factors can be allocated to different groups, based on their involvement 

in abiotic- and biotic- stress reponses. Transcriptional factors are attractive compared 

to specific genes, because they are more likely to provide an avenue to stress-tolerant 

plants in plant breeding. 

 

Another important issue is the processing of microarray data related to stress-

responsive gene expression. Mitra et al. (2002) describe an on-line database that is 

specifically focused at stress-research with microarrays in Arabidopsis. It is expected 

that this specialised database will facilitate exchange of results of microarray 

experiments by allowing for specific additional data to be incorporated with the 

submitted data (Mitra et al., 2002). With regard to normalisation, it should be taken 

into account that “housekeeping” genes are not suitable for this purpose, given the 

fact that the expression of these genes may also be affected by stress (Swidzinski et 

al., 2002). 
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Stress Plant Types of genes probed Differentially expressed genes Reference 

High light 

 

Arabidopsis 

 

pigment biosynthesis 

antioxidant biosynthesis 

photosynthesis 

 

Heat shock proteins (+) 

pigment biosynthesis (+) 

antioxidant (+) 

flowering (-/+) 

chlorophyll synthesis (-) 

 

Rossel et al., 2002 

 

Heat 

Senescence 

 

Arabidopsis 1 

 

senescence 

hypersensitive response 

antioxidant metabolism 

cell maintenance 

mitochondrial proteins 

 

senescence-related and –activated (+) 2, 3 

hypersensitive response (+) 2 

antioxidant enzymes (+) 2 

mitochondrial adenine transport (-) 2 

 

Swidzinski et al., 2002 

 

Abiotic 4 

Biotic 5 

 

Arabidopsis 

 

stress-related (putative) 

transcription factors 

 

salicylic acid-inducible (+) 

jasmonic- acid/ethylene inducible (+) 

inducible by additional factors (+) 

 

Chen et al., 2002 

 

Oxidative Strawberry 

 

ripening-regulated detoxifying enzymes (+) 

protective enzymes (+) 

pathogenesis related proteins (+) 

 

Aharoni et al., 2002 

 

Iron 

deficiency 

 

Barley 

 

rice ESTs 

 

(deoxy)mugineic acid synthesis/conversion (+) 

methionine synthesis and Yang cycle (+) 

cytoskeleton-related (+) 

transcription regulation (+) 

translation-related (+) 

vacuole-related (+) 

vesicle transport-related (+) 

enolases (+) 

 

Negishi et al., 2002 

 

Drought 

Salt 

 

Barley 

 

drought-stressed 

 

jasmonic acid biosynthesis (+)  6 

proline biosynthesis (+) 6 

abiotic stress-related (+) 6 

transport proteins (-) 6 

alpha-amylase (-) 6 

vacuolar processing enzyme (-) 6 

unknown function (-) 6 

 

Ozturk et al., 2002 
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Drought 

Shade 

 

Maize 

 

- maize ESTs 7 

- non-targeted 

 

- shade: 

   abscisic-acid response (+) 

   starch biosynthesis (-) 

- drought 

   ear: cellular growth (-) 

   pedicel: phenylpropanoid/lignin biosynthesis (-) 

   seed except pedicel: non-classified (+) 

 

Zinselmeier et al., 2002 

 

Drought 

 

Loblolly pine 

 

resistance-related 

signal transduction 

stress-related 

 

aquaporins/dehydrins (+) 8 

heat shock proteins (+)8 

lignin biosynthesis (0) 8 

waterstress-inducible chaperone (+)8 

 

Heath et al., 2002 

 

(+) upregulated; (-) downregulated; EST = expressed sequence tag 
1 cells in suspension culture 
2 genes differentially expressed in both conditions (heat and senescence) 
3 especially cysteine protease expression was noted 
4 abiotic stress: cold, salt osmoticum, jasmonic acid 
5 biotic stress: infection by bacteria, fungi, oomycetes, and viruses 
6 genes differentially expressed in both conditions (drought and salt) 

7 carbohydrate/hormone metabolism; cell cycle; stress reponse/signalling 
8 regulation in mild stress, role for stress adaption given no- or negative regulation of same gene during severe stress 
 

Table 3. Recent studies into stress-induced differential gene-expression in plants by 

microarray analysis  
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Chapter 5  Selection of individual cDNAs for 
characterisation of food plants  
 

5.1. Selection of markers 
 

With our increasing knowledge of the plant’s physiology and the metabolic routes that 

lead towards the key nutrients and anti-nutrients in the plant, it becomes more and 

more feasible to select individual cDNAs, or parts thereof, to compose a new, highly 

informative microarray containing solely cDNAs that are directly relevant for the food 

safety characterisation of a new crop plant variety. For economically important food 

crops this may be possible in the coming few years. On the other hand, developments 

are going everfaster and full transcriptome microarrays will be available for the first 

few important food crops before long.  

 

For the characterisation of the safety of new crop plant varieties basically three sets of 

genes can be thought of, i.e. 1) general markers or the so-called ‘housekeeping’ 

genes, 2) markers related to the nutritional and wholesomeness aspects of the plant 

and 3) markers related to antinutritional factors.  

1) General cell metabolism markers. These are genes that are expressed in all 

different tissues and in the subsequent developmental stages of the crop plant and 

disturbance of the overall physiology of the plant will be reflected in the expression 

levels of these general markers. It will, however, be very delicate to establish such 

a set of general markers. It is known that constant expressors may be disturbed by 

different stress factors and detailed knowledge on their expression levels under 

different environmental stress conditions will be required in order to be able to 

interpret results from plant samples that may have experienced a form of stress 

during the growth period. Also, constant expression may vary in the different 

tissues and therefore a very clear definition of the tissues to be sampled will be 

required.  

2) Health/nutrition-related markers are expression products of genes that are known 

to be involved in metabolic routes leading to macro- and micronutrients. At this 

moment we do not have a clear listing of plant constituents that can be considered 

nutrients, but for a number of plants the OECD consensus documents can be 
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considered a starting-point in this respect. Assuming that the nutrient-related 

metabolic routes of the crop species that are now being scrutinised using the 

microarray technology will be elucidated, a health/nutrition-related marker array of 

these species will become feasible. At the same time it is becoming clear that the 

networks, both in GM and traditional plant varieties, are very complex and small 

changes in ratios may lead to important shifts in e.g. secondary metabolites. 

Therefore it should be investigated whether it will be sufficient to monitor individual 

genes in important metabolic pathways or that it is necessary to determine relative 

levels between the different expression products involved.  Before the precise 

interactions with the related proteins and, most important, the resulting metabolites 

are sufficiently known, it will require additional independent analysis of these 

substances. 

3) For anti-nutrients/natural toxins and stress-related markers the same 

considerations can be made as for the health/nutrition-related markers, with the 

addition that the elucidation of the anti-nutrient metabolic routes lags far behind 

the elucidation of positive factors in economic crop plants. Despite some valuable 

overviews of secondary metabolite (Hadacek, 2002), in many less well-

documented crop species there is very limited information on the presence and 

character of anti-nutrients, including natural toxins. In economically more important 

plant varieties the information on the nature of the anti-nutrients is usually 

available, but natural variation in these substances has only recently, basically 

since the advent of genetically modified organisms and the related regulatory 

requirements, obtained more attention. As a result of this in many cases there are 

no validated methods of analysis available to determine levels of the anti-nutrients 

in the plant. This will severely hamper the establishment of clear correlations 

between gene expression levels in plant samples and the related levels of natural 

toxins. 

 

In general it can be stated for all three categories that an informative array can only be 

constituted of well-characterised cDNA sequences, both in the sense of the activity 

and function in physiological networks as with relation to the natural variation in gene 

expression in different tissue and under different (stress) conditions. Such a focused 

array may be more sensitive as the number of spots is limited, thereby optimising the 

conditions for hybridisation of individual sequences. Likewise global, whole genome 
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arrays may show a larger number of significant changes in gene expression that may 

not be biologically relevant, due to more varying conditions for individual hybridisation 

events. On the other hand theoretically the same information can be obtained from the 

whole genome array compared to the focused array without the risk of overlooking 

important changes in metabolic networks that were deemed less relevant in the initial 

selection of pathways to be investigated.  Direct comparison of the two options in a 

number of different settings will be necessary in order to be able to make an informed 

choice.  
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Chapter 6  The role of gene expression microarray 
technology in the wider profiling of food plants 
 

6.1 Proteomics   
 

Proteomics is the direct counterpart to transcriptomics. Any indication for  differential 

gene expression will need to be confirmed by other technologies. The most direct way 

of verifying the biological effect of altered levels of transcription products is the 

analysis of the subsequent translation step which leads to the formation of the related 

proteins. The main approach currently applied to analyse the proteome, i.e. the total of 

proteins per unit (cell, tissue or organism), is two-dimensional gel electrophoresis 

(2DGE) to separate the individual proteins in two-dimensional space by size and 

charge. Subsequently it is possible to excise individual protein spots and analyse 

them by mass spectrometry (Anderson and Mann, 2000; Kuiper et al., 2003). There 

are, however, limits to what 2DGE can analyse as, in general, only highly expressed 

proteins will be detected (Gygi et al., 2000). Also, Heazlewood and Millar (2003) noted 

that if peptide mass spectra are to be matched with genomic data from other species, 

MS/MS rather than MALDI-TOF should be employed to avoid uncertainties. The 

application of this technique to study differences in gene expression in GM plants 

versus their traditional counterpart is now also being tested in the European 

GMOCARE project (http://www.entransfood.nl). In this project samples of GM tomato 

and potato plant lines and their traditionally bred parent lines are analysed with a 

range of profiling techniques, including proteomics on the basis of 2DGE. To this end 

libraries are also developed of 2DGE images of e.g. the tomato in different stages of 

ripening. These libraries will serve as background data for the analysis and 

interpretation of differences in protein composition between the GM plant and the 

traditional parent line. Other approaches to analyse the proteome of GMOs are now 

investigated, e.g. the use of isotope-coded affinity tags to analyse fragmented proteins 

or multidimensional liquid chromatography coupled to mass spectrometry 

(http://www.foodstandards.gov.uk/science/research/NovelFoodsResearch/g02progra

mme/g02projectlist/g02001). Protein microarrays are now being developed on the 

basis of well-characterised protein-protein interactions, enzyme substrates and 

inhibitors, antigen-antibody and protein-ligand interactions. Theoretically protein 
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arrays can expand more easily the moment new information on the proteome 

becomes available and may reduce the time to set up new protein analysis systems, 

while increasing the reproducibility and potential for quantification. Routine use of 

informative protein microarray systems to investigate changes in the physiology of 

new plant varieties will, however, not be possible until a number of  current problems 

with respect to array production and assay performance are solved (MacBeath et al., 

2000; Templin et al., 2002). 

 

6.2. Metabolomics 
 

Analogous to the cascade of gene - gene product (enzyme) - metabolite, the 

metabolome is the level of cellular organization after the genome and proteome. The 

metabolome engenders the metabolites that occur within a biological entity. 

Metabolomics, i.e. the non-targeted study of the metabolome, can be a valuable 

addition to cDNA profiling in providing insight into the extent by which metabolites are 

affected by mRNA and protein expression and thereby contribute to 

phenotypic/genotypic variation. In fact, a recent review describes that due to the broad 

substrate specificity of enzymes, substrate availability is an important factor in 

metabolite formation, and hence the identity and composition of the metabolites 

(Schwab, 2003). 

 

Various recent reviews describe the background of- and techniques used for- 

metabolomics (e.g., Phelps et al., 2002; Roessner et al., 2002; Sumner et al., 2003). 

From these reviews, it can be learned that metabolomics is a rapidly evolving field of 

scientific research, not only for plant physiology, but also medicine and microbiology. 

For plant metabolomics, several analytical techniques in particular are applied to 

obtain metabolite profiles of plant extracts. In most cases, these techniques combine 

chromatographic separation with broadly applicable spectrometric detection. 

Examples are gas chromatography coupled to mass spectrometry (GC-MS), liquid 

chromatography coupled to mass spectrometry (LC-MS), and liquid-chromatography 

coupled to nuclear magnetic resonance (LC-NMR). These techniques have their own 

particular advantages. Gas chromatography, for example, may be readily applied to 

small molecules that are volatile or that can be volatilized by derivatization. Liquid 

chromatography provides an alternative for larger molecules that cannot be properly 
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volatilized, as well as for heat-labile substances that disintegrate under the high-

temperature conditions of gas chromatography. For mass spectrometric detection 

following liquid chromatography, interfaces are needed to bring the target substances 

from the liquid- into the gaseous- phase.  

 

By GC-MS, Fiehn et al. (2000), for example, observed that the metabolomes of two 

ecotypes of Arabidopsis thaliana showed less resemblance to each other than each 

ecotype with a mutant that displayed metabolic alterations. In addition, Ward et al. 

(2003) applied proton(1H)-NMR to extracts of Arabidopsis thaliana from various 

geographical origins. It was observed that differences in the levels of two metabolites 

(fumaric acid and glutamic acid) contributed most to differences between clusters of 

samples from different origins.  

 

Furthermore, a recent report describes differences between patterns of NMR-profiles 

of plant extracts (Ott et al., 2003). NMR patterns were analysed that were induced by 

specific herbicides that had been applied to plants and thereby allowed to defer the 

modes-of-action of these herbicides. 

 

Various reports describe the application of metabolomics to the identification of 

differences between genetically modified crops and their non-modified counterparts. 

Noteborn et al. (2000), for example, applied LC-NMR to genetically modified tomatoes 

modified with either the insecticidal Cry1Ab protein and with long-ripening 

characteristics (exogalactanase suppression). By subtraction of spectra of genetically 

modified- versus  non-modified tomato extracts, they were able to identify glutamic 

acid and citric acid as the two metabolites that were altered in the long-ripening 

tomato compared to the parent line. Another example of metabolite profiling of crops 

with a more complex, "second generation" modification, is provided by Le Gall et al. 

(2003). Tomatoes were analysed that had been modified with transcription factors in 

order to enhance flavonoid synthesis in the fruit flesh by 1H NMR. In addition to the 

appearance or elevated levels of flavonoids, also alteration in levels of other 

metabolites as observed, including amino acids, nucleotides/-sides, sucrose, malic 

acid, and citric acid (Le Gall et al., 2003). These reports and others on plant mutants 

and transformants demonstrate the applicability of metabolomics to characterisation of 

plants with altered genetic constitutions. 
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Different phases of the metabolomic assay techniques can in general be discerned, 

i.e. sampling, extraction, analysis (separation, detection, characterisation), and data 

processing, all of which need to be standardised/normalised in order to obtain 

reproducible outputs in terms of quality and quantities. Defernez and Colqhoun 

(2003), for example, determined the influence of peak shape, -hight and -separation in 

1H-NMR fingerprints of metabolites from potato, tomato, and tea on the outcomes of 

the subsequent clustering of results through PCA. It was found that the PCA 

outcomes could vary between repeated experiments due to imperfections in signal 

detection. Ways to prevent this variation would include alternative sample preparation 

and peak alignment. While this study focused on NMR, the findings can be 

generalised towards other analytial techniques, including HPLC separation and 

infrared spectroscopy. 

 

6.3 Glycomics 
 

In addition to generally known ‘omics’ technologies, such as (functional) genomics, 

proteomics and metabolomics, another ‘omics’ technology may prove its value in the 

coming years. This is glycomics, the set of technologies that aim to elucidate and 

characterise the entire complement of sugar chains in a cell that is called the 

‘glycome’. This is likely to be most complicated branch on the ‘omics’ tree as every 

protein has numerous glycosylation sides, each of which may have different sugar 

groups attached, and these sugar chains can themselves be modified depending on 

the cell’s state of activity (Perkel, 2002). The glycome is a complex system with each 

cell, tissue, organ and organism having different ever-changing glycosylation patterns. 

Carbohydrate-binding proteins and antibodies may play a crucial role in future high-

throughput elucidation of characterising glycosylation patterns. At this moment the 

best way to determine glycan structures is mass spectrometry (Dell and Morris, 2001). 

Whether elucidation of the glycome will give relevant information for the purpose of 

characterisation and/or evaluation of new plant varieties, remains to be seen.  
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 transciptomics Proteomics Metabolomics glycomics 

pro -complete or large portion 
of the transcriptome can 
be investigated 
-high-throughput of 
samples possible 
-large worldwide effort to 
come to consensus on 
experiment design and 
data interpretation 

-more direct relation with 
compositional changes in 
plants 
-direct screening of allergens 
possible 
 

-direct relation with 
compositional changes 
in plants 
-availability of non-
invasive techniques 

Relevance in 
relation to 
allergenicity 

con -indirect approach to 
changes in plant’s 
physiology 
-data analysis time 
consuming 
-vast amounts of data lead 
to statistical difficulties 
-validity of technique as 
‘stand-alone’ research tool 
still questionable 

-only small portion of 
proteome can be 
investigated 
-2D gel electrophoresis time 
consuming 
-protein microarrays still 
very much in developmental 
stage 
 

-very limited portion of 
metabolome can be 
investigated 

- glycome 
analysis is very 
complex due to 
the constant 
changes  

 

Table 5 Pros and cons  of different ‘omics’ technologies for safety assessment in 

plants 
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Chapter 7 General discussion. 
 

The main attribute of the microarray technology is the possibility to scale up 

tremendously the rate of data acquisition. This, together, with the enormously 

increased capacity to sequence entire genomes is now resulting in a rapid increase of 

our insight into the physiology of plants. However, this increasing insight has already 

made clear that a number of earlier assumptions on relations between the different 

levels of DNA, mRNA, proteins, and secondary metabolites are not as straightforward 

as was anticipated. The number of genes of the human genome, for instance, turned 

out to be much smaller (in introduction: app. 35.000, Arabidopsis 29.000) than 

expected. In order to explain at the same time the complexity of the human body this 

probably means that the interactions between the different molecules may be more 

complex than anticipated. This is likely to be at least as complex in plants.  

 

The composition of plants has not been a subject of major interest to the scientific 

community and even plant breeders focused mainly on other phenotypic effects such 

as yield or pest resistance rather than on compositional parameters. As a result, our 

knowledge of even the economically most prominent plant varieties is not very well 

documented. This lack of interest has changed markedly with the generation of the 

first genetically modified plant varieties. It was soon generally acknowledged that the 

best way to assess GM plants would be on the basis of a thorough compositional 

comparison, usually with the direct parent line. Data on individual plant constituents 

are now gathered, for instance by the ILSI and OECD, and stored in informative 

databases and consensus documents. At the same time it was acknowledged that the 

‘traditional’ dataset of individual plant components provides a somewhat biased view 

on the plant’s composition, as data on specific nutrients may be readily available 

whereas data on anti-nutrients, and especially natural toxins, may be limited for a 

number of crop species. But even if data are sufficient, it remains uncertain to what 

degree unintended side effects of a genetic modification can eventually be detected 

using this targeted compositional analysis.  

 

Therefore international advisory bodies have urged the need for the development and 

evaluation of unbiased profiling methods that may be able to give additional 

information on the changes in the plant’s physiology. As a result of this and in 
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accordance with the rapid development of high-throughput methodologies to 

investigate different types of molecules of interest, systems have been set up that may 

be useful in screening for differences in the new plant varieties compared to their 

traditional counterpart(s). The microarray technology is one of the most important 

developments in this respect. The advantage of this technology is that rapid 

expansion of the array is feasible the moment additional genomic information or 

materials become available. It is likely that the first crop-specific whole genome gene 

expression arrays will soon become commercially available. In this way tissue 

samples of novel plant varieties can rapidly be screened for differences in gene 

expression. This may become increasingly of interest now that a new generation of 

GMO products is being developed that have more profound physiological differences 

compared to the traditional parent lines. Preferably metabolic routes representing both 

edible as well as non-edible plant parts should be selected for the construction of the 

array in order to trace the activation of pathways that are usually silenced in the edible 

parts. Likewise the analysis of the non-edible plant parts may reveal differences in 

gene expression that may affect the safety of the edible parts, for instance as a result 

of the transportation of toxic substances to the parts to be consumed.  

 

Different types of microarray systems are now available, differing largely in state of the 

art of the underlying technology and related protocols, and also in costs of equipment 

and materials. This differentiation will continue with new developments that are even 

better equipped to answer specific questions of the (scientific) community.  

 

For the purpose of the food safety evaluation of GM plant products it is possible to use 

either whole transcriptome arrays, when available, or more concise, focused arrays. 

Focused arrays should consist of probes that are related to key nutrient and 

antinutrient metabolic routes, as well as to more basal cell metabolism- en stress-

related pathways. Focused arrays may be more sensitive, but evidently there is a bias 

as to the range of unintended effects that can be detected in this way.  

 

A number of factors will be decisive for the potential outcome of any microarray 

experiment, the most important ones being the nature of the probes that are spotted 

on the array, the quality of the mRNA to be hybridised to the array, experimental set-

up and the selected data analysis procedure. It is therefore crucial that all of these 
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factors are given ample thought prior to any experiment. Due to the fact that the 

quality of the easily degradable mRNA is so important, it does not seem feasible to 

develop gene expression profiling strategies to compare processed food products: 

minor differences in processing conditions that are difficult to control for will be 

reflected in the resulting gene expression pattern. It is therefore recommended that 

gene expression profiling should only be performed on the original plant/plant parts or 

raw materials and not on the products derived thereof.  

 

Another crucial factor is the sampling of mRNA populations to be investigated in 

relation to the characteristics of the array used. Usually the plant parts of interest will 

contain a number of different tissue types. Equal representation of all different tissue 

types in the experimental samples is very important. Furthermore, all key metabolic 

routes that require analysis need to represented on the array. In the future the use of 

whole transcriptome arrays or well-characterised focused array will make it easy to 

check for this requirement, but nowadays careful analysis of the libraries used on the 

array will be necessary.   

 

An average DNA microarray experiment results a huge number of gene expression 

data which need to be analysed. It is important to include quality checks at all stages 

of the experiment to avoid inclusion of inferior data in the analysis. The subsequent 

steps are generally quantification of the signal, background subtraction, normalisation, 

and visualisation. All of these steps can be done in numerous ways. The necessity to 

carefully document the followed route from raw data to conclusions in an experiment 

is therefore evident, including the necessity to have full insight into the subsequent 

data analysis steps. Current microarray data analysis and visualisation software are 

very user-friendly, but in practice it still remains the challenge to find the optimal route 

of analysis for every individual experiment.  

 

Also, it is important to note that the analysis of DNA microarray data can be expected 

only to result in indications of possibly altered gene expression in the novel plant 

variety compared to the traditional counterpart. Additional targeted investigations will 

usually be required to confirm the results. These additional experiments may be based 

on more focused molecular biological methodologies, for instance real-time PCR or 
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Northern blotting, or on the targeted assessment of the related effects at the level of 

proteins or metabolites.  

 

It may prove necessary to establish more exact (regulatory) criteria to determine 

differential gene expression in the GM plant versus the parent line. The practical 

approach is a two-step approach: first gene expression patterns of the GM plant are 

compared to the parent line or, if the parent line is not available, any other near 

comparator. If differences are detected, the levels are compared to the knowledge on 

the natural variation of the specific compound, mRNA, in other traditional varieties that 

are already on the market. It can, however, be imagined that changes in the GM plant 

versus the parent line that fall within the range of the natural variation of traditional 

varieties may, however, be of a nature that should nevertheless require further study.  

 

The resulting data of microarray experiments may be informative not only to the 

scientists performing the experiment, but also to the broader scientific community. 

Therefore initiatives are ongoing to set up large databases with strict quality control 

criteria for microarray gene expression data. MIAME-compliant data reporting of gene 

expression experiments is now already becoming standard in the scientific literature. 

The objective of the MIAME initiative is to standardise the information related to any 

individual experiment in order to prevent loss of information in the future due to the 

incompatibility of different systems. In addition it is recommended to start considering 

the possibility of linking MIAME-type databases with data from other sources 

representing other ‘omics’-methodologies or techniques such as real-time PCR, 

Northern blotting or individual protein analysis to avoid future incompatibilities 

between the different systems. For the purpose of the food safety analysis of new 

plant varieties it is important to analyse different integration levels in order to obtain 

optimal information on potential unintended side effects as a result of the selected 

breeding strategy.  

 

Other ‘omics’ technologies, such as proteomics, metabolomics and glycomics are also 

becoming increasingly advanced and informative therewith. Gene expression profiling 

now has the advantage that it can basically cover the whole transcriptome of 

individual species, tissues or cell systems. The moment, however, similar informative 

methodologies have been developed for the proteome and metabolome the added 
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value of gene expression profiling may be reduced. In the meantime we can learn a lot 

from the potential of microarray experiments to elucidate metabolic networks and the 

documentation of the natural variation in gene expression in traditional crop plant 

varieties as well as of observed differences in novel (GM) varieties versus their parent 

lines.  
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Chapter 8 Conclusions  
 

The information in the previous chapters about the DNA microarray technique and the 

discussions in the working group lead to conclusions about the usefulness of this 

technique in safety assessment of food from GM-plants. 

  

Some of the conclusions are based on the fact that this technique is new and 

experiences are limited. These conclusions may therefore be of a general nature for 

new techniques. Others are linked to the use of DNA microarray technology with 

mRNA as a target for analysis. The analysis of RNA has the weakness that difference 

in mRNA level between samples is not a health issue in itself and they are not directly 

predictive for the level of proteins formed or quantities of metabolic product and 

therefore any final health issue. 

 

When a comparison is done between plants in the same experiment and especially 

between two experiments, the observed differences can easily be due to small 

unintended variations in the experimental environment such as soil and temperature, 

damaged by insects, fungi etc. This implies that much knowledge is needed about 

how these factors may influence the results of the analysis and how this interference 

can be overcome before any conclusions can be made. 

 

The most important conclusions that emerge from the present report are: 

 

The quality of the mRNA populations to be hybridised in microarray experiments is 

crucial for the reliability of the resulting data. The mRNA has to be of high quality in 

order to compare two subsequent samples. Therefore standardisation is essential for 

the different steps in the microarray analysis including procedures for sampling, 

mRNA isolation and quality control. 

 

The quantitative correlation between mRNA, proteins and secondary metabolites is 

very complex which hinders the interpretation of mRNA microarray results and 

particularly their consequences. This barrier for interpretations can be expected to 

diminish as the knowledge about this complex system increase. 
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The benefit from analyzing for thousands of genes/mRNA might be limited because of 

their minor impact on health-related aspects or the lack of knowledge about the 

correlation between the mRNA levels and safety issues. However the microarray has 

the potential, unlike proteomics or metabolomics, to screen multiple networks for 

unintended alterations as a result of  modifications in a plant. 

 

Gene expression profiling seems only applicable on the original plant/plant parts or 

raw materials and not on the products derived thereof as slightly different conditions in 

the food or food product will generally have large effects on the quality of the isolated 

mRNA. 

 

Result from the RNA microarray analysis should be considered only as suggestive 

due to e.g. the incomplete knowledge about the natural variation. 

 

Although the RNA microarray technique has the great potential in unbiased screening 

for unintended effect, the technique has not yet proved its relevance in risk 

assessment. 

For the purpose of the food safety analysis of new plant varieties, including GM plants, 

it is important to analyse on other integrative levels, such as the protein or metabolite 

level in order to obtain optimal information on potential side effects as a result of the 

breeding strategy. 

 

As the other “omics” are under development, such as the proteome microarrays and 

metabolomics, this may lead in future to ‘whole proteome’ or “whole metabolome” 

approaches that may reduce the need for gene expression profiling at the mRNA 

level.  

The value of microarray will probably be highest in the developmental phase of food 

crops by suggesting metabolic reactions or pathways that should be explored more 

closely by more targeted methods. 

 

The potential for mRNA microarray technology is considerable in specific applications 

as it miniaturises mRNA analysis, thereby enabling the establishment of gene 

expression profiles of individual mRNA samples on the basis of thousands of different 

genes, representing numerous different metabolic routes. 
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For the safety assessment of novel plant varieties, including GM plants, relevant 

metabolic routes may be 1)nutrient-related pathways, 2) metabolic pathways that can 

be used to screen for differences in the basal physiology of the plants and 3) stress-

related metabolic pathways as it is known that upregulation of these pathways may 

lead to an increased production of anti-nutrients, including natural toxins.  If the 

microarray is to be used for safety assessment, arrays comprising these three 

different categories of probes might be more applicable for safety assessment as the 

probes have been chosen for their relevance to safety issues. 

 

For GM-plant evaluation, the microarray methods and data documentation need to be 

standardised. 

 

Availability of “standard microarrays” for the individual plants, representing relevant 

plant part such as leaves, fruits and  roots will allow cooperation in this field. The 

same apply to standards for data storage, data retrieval and availability of those data 

in the public domain. 
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Glossary 
 

Abscisic acid Plant hormone 

ANN Artificial Neural Network, computer algorithm for pattern 

recognition in large datasets, either unsupervised (SOM) or 

supervised. 

Annotation 

 

Recording of a gene's DNA sequences and eventually their 

chromosomal position and function 

ANOVA Analysis of variance, statistical method for validation of potential 

difference in a variable in multiple samples. 

Anthesis Anther formation, i.e. reproductive organ of plant flower 

cDNA Complementary DNA, in vitro made DNA molecule, contains the 

information in a mRNA molecule transferred to a DNA backbone. 

Dendrogram Schematic overview of the relationships between various variables 

or samples in an experiment, result of hierarchical cluster analysis. 

DFA Discriminant Function Analysis, supervised method for pattern 

recognition in large datasets. 

DNA Deoxyribonucleic acid, contains genetic information in living cells. 

Down regulation Process that causes a decrease of gene expression 

DTL Decision Tree Learning, supervised method for pattern recognition 

in large datasets. 

EBI European Bioinformatics Institute, participates in MGED. 

Enzyme Protein that catalyses a specific process in living cells or in vitro. 

EST Expressed Sequence Tag, contains the sequence of part of a 

gene that has not yet been annotated, known to be expressed in 

certain circumstances in a particular tissue. 

Ethylene Plant hormone 

Evolutionary 

computing 

Supervised method for pattern recognition in large datasets. 

FSA Food Standards Agency (UK). 

Glycome The total of sugar molecules per cell. 

Hierarchical 

clustering 

Unsupervised method for pattern recognition in large datasets. 
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Housekeeping 

genes 

Genes that encode for enzymes, RNA, or other functional 

biomolecules with elementary roles in the maintenance and growth 

of cells 

Jasmonic acid Plant hormone 

MAGE Microarray gene expression, MGED working group for the 

establishment of a uniform data exchange format for microarray 

experiments. 

Metabolome The total of metabolites per cell. 

Methyl jasmonate Plant hormone 

MGED Microarray gene expression society, international group of 

scientists aiming towards a consensus on microarray experiments. 

MIAME Minimal information about a microarray experiment, guidelines for 

the information that should be provided in order to peer-review 

microarray experiments, formulated by the MGED. 

Microarray  Collection of large amounts of different molecules, organised in 

spots, immobilised on various types of surfaces. 

mRNA messenger RNA, transcript of the DNA, encoding a specific gene. 

Mutagenesis Induction of nucleotide sequence mutations, such as with the aid 

of chemicals or radiation 

MS Mass Spectrometry, technique for identification of molecules 

based on their difference in mass. 

NCBI National Centre for Bioinformatics, American organisation for data 

storage and analysis of sequence databases and microarray 

experiments. 

NMR Nuclear Magnetic Resonance, technique for identification of 

molecules, based on the different magnetic behaviour of hydrogen 

(or other) nuclei in different molecules. 

OWG Ontology working group, MGED working group for the 

development of a common vocabulary for microarray experiment 

description. 

PCA Principal Component Analysis, unsupervised method for pattern 

recognition in large datasets. 

PCR Polymerase Chain Reaction, method for the amplification of a 

specific DNA fragment. 
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Probe ‘Known’ DNA sequence that is used in molecular biological 

analysis 

promoter DNA sequence in front of a gene, regulating the expression of that 

gene. 

Proteome The total of proteins per cell  

Q-RT-PCR Quantitative reverse transcriptase PCR, process of quantifying 

mRNA molecules, after converting them to cDNA. 

Regulon Genes with common regulation patterns 

Responsive gene Gene of which the expression is altered in response to a specific 

stimulus/effector 

RNA Ribonucleic acid, molecules in living cells, with different functions 

involved in transferring the information present in the DNA to 

functional proteins. 

RT Reverse transcriptase, enzyme used for the conversion of mRNA 

to cDNA. 

Salicylic acid Plant hormone 

SAR  Systemic acquired resistance, i.e. non specific defense reactions, 

such as plant tissue destruction, in response to systemically 

delivered effector molecules 

Stress  Physiological condition that demands an above normal turnover of 

energy and/or intrinsic substances, such as during infection by a 

pathogen 

Target DNA  (Pool of) labelled DNA fragments that are hybridised to the array 

TIGR The Institute for Genomic Research 

Transcription Process in the cell when information is transferred from DNA to 

mRNA. 

Transcriptional 

factor 

Protein that controls the transcription of (a set of) specific genes by 

binding regulatory DNA sequences 

Transcriptome The total of mRNAs per cell  

Translation Process in the cell when information is transferred from mRNA to 

proteins. 

Upregulation Process that causes a increase of gene expression 
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