1,124 research outputs found

    An exact Coulomb cutoff technique for supercell calculations

    Get PDF
    We present a new reciprocal space analytical method to cutoff the long range interactions in supercell calculations for systems that are infinite and periodic in 1 or 2 dimensions, extending previous works for finite systems. The proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor to screen the bare Coulomb interaction. The functions are analytic everywhere but in a sub-domain of the Fourier space that depends on the periodic dimensionality. We show that the divergences that lead to the non-analytical behaviour can be exactly cancelled when both the ionic and the Hartree potential are properly screened. This technique is exact, fast, and very easy to implement in already existing supercell codes. To illustrate the performance of the new scheme, we apply it to the case of the Coulomb interaction in systems with reduced periodicity (as one-dimensional chains and layers). For those test cases we address the impact of the cutoff in different relevant quantities for ground and excited state properties, namely: the convergence of the ground state properties, the static polarisability of the system, the quasiparticle corrections in the GW scheme and in the binding energy of the excitonic states in the Bethe-Salpeter equation. The results are very promising.Comment: Submitted to Physical Review B on Dec 23rd 200

    Remote sensing of cloud liquid water during ICE'89

    Get PDF
    The cloud liquid water path, LWP, over the North Sea during the International Cirrus Experiment 1989 (ICE'89) is derived from measurements of the microwave radiometer SSM/I on board.of the polar orbiting satellite DMSP and from measurements of a ground-based 33-GHz-radiometer operating on board of the German research vessel 'Poseldon'. Comparisons of maps of LWP compiled from the SSM/I data with time series computed from the ground-based system show no significant bias and agree within the range of uncertainty caused by the different sampling characteristics of the observing systems. Using a combination of SSM/I data and almost simultaneously recorded METEOSAT-IR data offers the possibility to identify different cloud types, e.g. to seperate cirrus clouds and cirrus with underlying water clouds. Both types may have the same IR-brightness temperature but different microwave brightness temperature because ice clouds have a negligible influence on the microwave radiances

    A mass formula for baryon resonances

    Full text link
    Light-baryon resonances with u,d, and s quarks only can be classified using the non-relativistic quark model. When we assign to baryon resonances with total angular momenta J intrinsic orbital angular momenta L and spin S we make the following observations: plotting the squared masses of the light-baryon resonances against these intrinsic orbital angular momenta L, Delta's with even and odd parity can be described by the same Regge trajectory. For a given L, nucleon resonances with spin S=3/2 are approximately degenerate in mass with Delta resonances of same total orbital momentum L. To which total angular momentum L and S couple has no significant impact on the baryon mass. Nucleons with spin 1/2 are shifted in mass; the shift is - in units of squared masses - proportional to the component in the wave function which is antisymmetric in spin and flavor. Sequential resonances in the same partial wave are separated in mass square by the same spacing as observed in orbital angular momentum excitations. Based on these observations, a new baryon mass formula is proposed which reproduces nearly all known baryon masses.Comment: 4 pages, 1 figur

    Assessment of processing technologies which may improve the nutritional composition of dairy products – Overview of progress

    Get PDF
    Among consumers there is a growing demand for food products with a natural nutritional-physiological advantage over comparable conventional products. As part of an EU funded project, ALP is examining the possible impact of processing on nutritionally valuable milk components, using the example of conjugated linoleic acids (CLA). The extent to which processing influences the CLA content of the end product was determined by literature research and own investigations of organic and conventional butter. Furthermore, new chemical, sensory-based and bio crystallization methods were evaluated by ALP and the University of Kassel to determine the oxidation stability of butter. In a further step the storage stability of CLA enriched and conventional butter was examined and the different methods will be compared. As a third objective a process for low-input CLA enrichment of milk fat (with a focus on alpine butter) has been developed. Since the process selected for the work is a physical enrichment process, it is accepted by international organic farming and food groups. Among the many benefits ascribed to CLA, it is believed to be an effective agent against cancer. The demand for foods with properties that promote human health is growing. The dairy industry has the opportunity to meet this demand by developing new dairy products with a nutritional-physiological function for the functional food market

    Time-dependent Density Functional calculation of e-H scattering

    Full text link
    Phase shifts for single-channel elastic electron-atom scattering are derived from time-dependent density functional theory. The H−^- ion is placed in a spherical box, its discrete spectrum found, and phase shifts deduced. Exact-exchange yields an excellent approximation to the ground-state Kohn-Sham potential, while the adiabatic local density approximation yields good singlet and triplet phase shifts.Comment: 5 pages, 4 figures, 1 tabl

    Exact-Exchange Kohn-Sham formalism applied to one-dimensional periodic electronic systems

    Full text link
    The Exact-Exchange (EXX) Kohn-Sham formalism, which treats exchange interactions exactly within density-functional theory, is applied to one-dimensional periodic systems. The underlying implementation does not rely on specific symmetries of the considered system and can be applied to any kind of periodic structure in one to three dimensions. As a test system, transtrans-polyacetylene, both in form of an isolated chain and in the bulk geometry has been investigated. Within the EXX scheme, bandstructures and independent particle response functions are calculated and compared to experimental data as well as to data calculated by several other methods. Compared to results from the local-density approximation, the EXX method leads to an increased value for the band gap, in line with similar observations for three-dimensional semiconductors. An inclusion of correlation potentials within the local density approximation or generalized gradient approximations leads to only negligible effects in the bandstructure. The EXX band gaps are in good agreement with experimental data for bulk transtrans-polyacetylene. Packing effects of the chains in bulk transtrans-polyacetylene are found to lower the band gap by about 0.5 eV

    Probabilistic Inductive Classes of Graphs

    Full text link
    Models of complex networks are generally defined as graph stochastic processes in which edges and vertices are added or deleted over time to simulate the evolution of networks. Here, we define a unifying framework - probabilistic inductive classes of graphs - for formalizing and studying evolution of complex networks. Our definition of probabilistic inductive class of graphs (PICG) extends the standard notion of inductive class of graphs (ICG) by imposing a probability space. A PICG is given by: (1) class B of initial graphs, the basis of PICG, (2) class R of generating rules, each with distinguished left element to which the rule is applied to obtain the right element, (3) probability distribution specifying how the initial graph is chosen from class B, (4) probability distribution specifying how the rules from class R are applied, and, finally, (5) probability distribution specifying how the left elements for every rule in class R are chosen. We point out that many of the existing models of growing networks can be cast as PICGs. We present how the well known model of growing networks - the preferential attachment model - can be studied as PICG. As an illustration we present results regarding the size, order, and degree sequence for PICG models of connected and 2-connected graphs.Comment: 15 pages, 6 figure
    • …
    corecore