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Exact Coulomb cutoff technique for supercell calculations
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We present a reciprocal space analytical method to cut off the long range interactions in supercell calcula-
tions for systems that are infinite and periodic in one or two dimensions, generalizing previous work to treat
finite systems. The proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor to
screen the bare Coulomb interaction. The functions are analytic everywhere except in a subdomain of the
Fourier space that depends on the periodic dimensionality. We show that the divergences that lead to the
nonanalytical behavior can be exactly canceled when both the ionic and the Hartree potential are properly
screened. This technique is exact, fast, and very easy to implement in already existing supercell codes. To
illustrate the performance of the scheme, we apply it to the case of the Coulomb interaction in systems with
reduced periodicity �as one-dimensional chains and layers�. For these test cases, we address the impact of the
cutoff on different relevant quantities for ground and excited state properties, namely: the convergence of the
ground state properties, the static polarizability of the system, the quasiparticle corrections in the GW scheme,
and the binding energy of the excitonic states in the Bethe-Salpeter equation. The results are very promising
and easy to implement in all available first-principles codes.
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I. INTRODUCTION

Plane-wave expansions and periodic boundary conditions
have been proven to be a very effective way to exploit the
translational symmetry of infinite crystal solids, in order to
calculate the properties of the bulk, by performing the simu-
lations in one of its primitive cells only.1 The use of plane
waves is motivated by several facts. First, the translational
symmetry of the potentials involved in the calculations is
naturally and easily accounted for in reciprocal space,
through the Fourier expansion. Second, very efficient and
fast algorithms exist �such as2 FFTW� that allow us to cal-
culate the Fourier transforms very efficiently. Third, the ex-
pansion in plane waves is exact, since they form a complete
set, and it is only limited in practice by one parameter,
namely, the maximum value of the momentum, that deter-
mines the size of the chosen set. In addition, the use of Born-
von Karmán periodic boundary conditions, independently of
the adopted basis set, gives a conceptually easy �though ar-
tificial� way to eliminate the dependence of the properties of
a specific sample on its surface and shape, allowing us to
concentrate on the bulk properties of the system in the ther-
modynamic limit.3

However, mainly in the last decade, increasing interest
has been developed in systems on the nanoscale, such as
tubes, wires, quantumdots, biomolecules, etc., whose physi-
cal dimensionality is, for all practical purposes, less than
three.4 These systems are still three-dimensional �3D�, but
their quantum properties are typical of a system confined in
one or more directions, and periodic in the remaining ones.
Other classes of systems with the same kind of reduced pe-
riodicity are the classes of the polymers, and of solids with

defects.
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Throughout this paper, we call nD-periodic a 3D object
that can be considered infinite and periodic in n dimensions,
and finite in the remaining 3-n dimensions. In order to simu-
late this kind of system, a commonly adopted approach is the
supercell approximation.1

In the supercell approximation, the physical system is
treated as a fully 3D-periodic one, but a new unit cell �the
supercell� is built in such a way that some extra empty space
separates the periodic replicas along the direction�s� in which
the system is to be considered as finite. This method makes it
possible to retain all the advantages of plane-wave expan-
sions and of periodic boundary conditions. Yet the use of a
supercell to simulate objects that are not infinite and periodic
in all the directions, leads to artifacts, even if much empty
space is interposed between the replicas of the system in the
nonperiodic dimensions.

In fact, the straightforward application of the supercell
method always generates fictitious images of the original
system, that can mutually interact in several ways, affecting
the results of the simulation. It is well known that the re-
sponse function of an overall neutral solid of molecules is
not equal, in general, to the response of the isolated molecule
and converges very slowly when the empty space in the su-
percell is progressively increased.7,8

For instance, the presence of higher order multipoles can
make undesired images interact via the long range part of the
Coulomb potential. In the dynamic regime, multipoles are
always generated by the oscillations of the charge density.
This is the case, for example, when we investigate the re-
sponse of a system in the presence of an external oscillating
electric field.

Things worsen when the unit cell carries a net charge,
since the total charge of the infinite system represented by

the supercell is actually infinite, while the charges at the
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surfaces of a finite, though very large system always generate
a finite polarization field. This situation is usually normalized
in the calculation by the introduction of a suitable compen-
sating positive background charge.9

Another common situation in which the electrostatics is
known to modify the ground state properties of the system
occurs when a layered system is studied, and an infinite array
of planes is considered instead of a single slab. Such an
infinite array is in fact equivalent to an effective chain of
capacitors.10

These problems become particularly evident in all ap-
proaches that require the calculation of nonlocal operators or
response functions, because, in these cases, a supercell, and
its periodic images may effectively interact even if their
charge densities do not overlap at all. This is the case, for
example, in many-body perturbation theory calculations
�MBPT�, particularly in the self-energy calculations at the
GW level.6,7

However we are generally still interested in the dispersion
relations of the elementary excitations of the system along its
periodic directions, and those are ideally treated using a
plane-wave approach. Therefore, the best way to retain the
advantages of the supercell formulation in plane waves, and
to gain a description of systems with reduced periodicity free
of spurious effects is to develop a technique to cut the Cou-
lomb interaction off outside the desired region. This problem
has been known for quite a long time and has appeared in
different fields �condensed matter, classical physics,
astrophysics,11 biology,12 particle physics13�. Several differ-
ent approaches have been proposed in the past to solve it.
The aim of the present work is to focus on the widely used
supercell schemes to show how the image interaction influ-
ences both the electronic ground state properties and the dy-
namical screening in the excited state of 0D-, 1D-, 2D-
periodic systems, and to propose an exact method to avoid
the undesired interaction of the replicas in the nonperiodic
directions.

The paper is organized as follows: in Sec. II, the basics of
the plane wave method for solids are reviewed; in Sec. III,
the method is outlined; in Sec. IV the treatment of the sin-
gularities is explained; in Sec. V, some applications of the
proposed technique are discussed.

II. THE 3D-PERIODIC CASE

The main problem of electrostatics which we are con-
fronted with here can be reduced to that of finding the elec-
trostatic potential V�r� that solves the Poisson equation for a
given charge distribution n�r�, and given boundary condi-
tions

�2V�r� = − 4�n�r� . �1�

In a finite system, the potential is usually required to be zero
at infinity. In a periodic system, this condition is meaning-
less, since the system itself extends to infinity. Nevertheless,
the general solution of Eq. �1� in both cases is known in the

form of the convolution
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V�r� =� � �
space

n�r��
�r − r��

d3r�, �2�

which will be referred to from now on as the Hartree poten-
tial.

It might seem that the most direct way to build the solu-
tion potential for a given charge distribution is to compute
the integral in real space. However problems immediately
arise for infinite periodic systems. In fact, if we consider a
periodic distribution of point charges located �for sake of
simplicity� at the set of lattice points �L�, then the periodic
density can be reduced to an infinite sum over � charge dis-
tributions q��r−r��

V�r� = �
�L�

q

�r − L�
, �3�

and the integral in Eq. �2� becomes an infinite sum as well.
This sum is however in general only conditionally, and not
absolutely convergent.14 The sum of Eq. �3� is a potential
that is determined up to a constant for a neutral cell with zero
dipole moment, while the corresponding sum for the electric
field is absolutely convergent. A neutral cell with a nonzero
dipole moment, on the other hand, gives a divergent poten-
tial, and an electric field that is determined up to an unknown
constant electric field �the sum for the electric field is condi-
tionally convergent in this case�.

Even if, in principle, the surface terms should always be
taken into account, in practice they are only relevant when
we calculate energy differences between states with different
total charge. These terms can be neglected in the case of a
neutral cell whose lowest nonzero multipole is quadrupole.15

As in the present work we are interested in macroscopic
properties of the periodic system, those surface effects are
never considered in the discussion that follows. However
these sample-shape effects play an important role for the
analysis of different spectroscopies such as, for example, in-
frared and nuclear magnetic resonance.

A major source of computational problems is the fact that
the sum in Eq. �3� is very slowly converging when it is
summed in real space, and this fact has historically moti-
vated the need for reciprocal space methods to calculate it. It
was Ewald who first discovered that, by means of an integral
transform, the sum can be split in two terms, and that if one
is summed in real, while the other in reciprocal space, both
of them are rapidly converging.16 The point of splitting is
determined by an arbitrary parameter.

Let us now focus on methods of calculating the sum in
Eq. �3� entirely in the reciprocal space.

Let us consider a 3D-periodic system with lattice vectors
L, and reciprocal lattice vectors G= 2�

L . The reciprocal space
expression for the potential

V�r� =� � �
space

n�r��v��r − r���d3r�, �4�

can be written as
-2
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V�G� = n�G�v�G� . �5�

To transform the real space convolution of the density and
the Coulomb potential into the product of their reciprocal
space counterparts in Eq. �5�, we have used the convolution
theorem. Here v�G� is the Fourier transform of the long-
range interaction v�r�, evaluated at the point G.

For the Coulomb potential, we have

v�G� =
4�

G2 . �6�

Fourier transforming expression �5� back into real space
we have, for a unit cell of volume �

V�r� =
4�

�
�

G�0

n�G�
G2 exp�iG · r� . �7�

At the singular point nx=ny =nz=0 the potential V is un-
defined, but, since the value at G=0 corresponds to the av-
erage value of V in real space, it can be chosen to be any
number, corresponding to the arbitrariness in the choice of
the static gauge �a constant� for the potential. Observe that
the same expression can be adopted in the case of a charged
unit cell, but this time, the arbitrary choice of v�G� in G=0
corresponds to the use of a uniform background neutralizing
charge.

III. SYSTEMS WITH REDUCED PERIODICITY

It has been shown17 that the slab capacitance effect men-
tioned in the Introduction is actually a problem that cannot
be solved by just adding more vacuum to the supercell. This
has initially led to the development of corrections to Ewald’s
original method,18 and subsequently to rigorous extensions in
2D and 1D.19,20 The basic idea is to restrict the sum in recip-
rocal space to the reciprocal vectors that actually correspond
to the periodic directions of the system. These approaches
are in general of order O�N2�,21,22 where N is the number of
atoms, but they have been recently refined to order
O�N ln N�.23,24 Another class of techniques, developed so far
for finite systems, is based on the expansion of the interac-
tion into a series of multipoles �fast multipole method�.25–27

With this technique it is possible to evaluate effective bound-
ary conditions for the Poisson’s equations at the cell’s bound-
ary, so that the use of a supercell is not required at all, mak-
ing it computationally very efficient for finite25,26 and
extended systems.27 Other known methods, typically used in
molecular dynamics simulations, are the multipole-
correction method,28 and the particle-mesh method,29 whose
review is beyond the scope of the present work. We refer the
reader to the original works for details.

Unlike what happens for the Ewald sum, the method that
we propose to evaluate the sum in Eq. �3� entirely relies on
the Fourier space and amounts to screening the unit cell from
the undesired effect of �some of� its periodic images. The
basic expression is Eq. �5�, whose accuracy is only limited
by the maximum value Gmax of the reciprocal space vectors
in the sum. Since there is no splitting between real and re-

ciprocal space, no convergence parameters are required.
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Our goal is to transform the 3D-periodic Fourier represen-
tation of the Hartree potential of Eq. �5� into the modified
one

Ṽ�G� = ñ�G�ṽ�G� �8�

such that all the interactions among the undesired periodic
replicas of the system disappear. The present method is a
generalization of the method proposed by Jarvis et al.30 for
the case of a finite system.

In order to build this representation, we �1� define a
screening region D around each charge in the system, outside
of which there is no Coulomb interaction; �2� calculate the
Fourier transform of the desired effective interaction ṽ�r�
that equals the Coulomb potential in D, and is 0 outside D

ṽ�r� = �1

r
if r � D

0 if r � D .
	 �9�

Finally we must �3� modify the density n�r� in such a way
that the effective density is still 3D periodic, so that the
convolution theorem can be still applied, but densities be-
longing to undesired images are not close enough to interact
through ṽ�r�.

The choice of the region D for step �1� is suggested by
symmetry considerations, and it is a sphere �of radius R� for
finite systems, an infinite cylinder �of radius R� for 1D-
periodic systems, and an infinite slab �of thickness 2R� for
2D-periodic systems.

Step �2� means that we have to calculate the modified
Fourier integral

ṽ�G� =� � �
space

ṽ�r�e−iG·rd3r =� � �
D

v�r�e−iG·rd3r ,

�10�

since the modified ṽ potential is zero outside the domain D.
Still we have to avoid that two neighboring images interact
by taking them far away enough from each other. Then step
�3� means that we have to build a suitable supercell, and
redefine the density in it.

Let us examine first step �2�, i.e., the cutoff Coulomb
interaction in reciprocal space. We know the expression of
the potential when it is cutoff in a sphere.30 It is

ṽ0D�G� =
4�

G2 
1 − cos�GR�� . �11�

The limit R→� converges to the bare Coulomb term in the
sense of a distribution, while, since limG→0ṽ0D�G�=2�R2,
there is no particular difficulty in the origin. This scheme has
been successfully used in many applications.14,26,30–32

The 1D-periodic case applies to systems with infinite ex-
tent in the x direction, and finite in the y and z directions. The
effective Coulomb interaction is then defined in real space to
be 0 outside a cylinder with radius R having its axis parallel
to the x direction. By performing the Fourier transformation
we get the following expression for the cutoff Coulomb po-

tential in cylindrical coordinates
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ṽ1D�Gx,G�� = �
0

R �
0

2� �
−�

+� e−i�Gxx+G�r cos ��

�r2 + x2
rdrd�dx ,

�12�

where G�=�Gy
2+Gz

2. For Gx ,G��0, the latter gives

ṽ1D�Gx,G�� = 2�
0

R �
0

2�

rK0�Gxr�e−iG�r cos �drd�

= 4��
0

R

rK0�Gxr�J0�G�r�dr ,

and finally33

ṽ1D�Gx,G�� =
4�

G2 
1 + G�RJ1�G�R�K0�GxR�

− GxRJ0�G�R�K1�GxR�� , �13�

where J and K are the ordinary and modified cylindrical
Bessel functions.

It is clear that, since the K functions damp the oscillations
of the J functions very quickly, for all practical purposes this
cutoff function only acts on the smallest values of G, while
the unscreened 4�

G2 behavior is almost unchanged for the
larger values.

Unfortunately, while the Jn��� functions have a constant
value for �=0, and the whole cutoff is well defined for G�

=0, the K0��� function diverges logarithmically for �→0.
Since, on the other hand, K1����−1 for small �

ṽ1D�Gx,G�� � − log�GxR� for G� � 0, Gx → 0+.

�14�

This means that the limit limG→0+ v�G� does not exist for this
cutoff function, and the whole Gx=0 plane is ill defined. We
will come back to the treatment of the singularities in the
next section. We notice that this logarithmic divergence is the
typical dependence one would get for the electrostatic poten-
tial of a uniformly charged 1D wire.34 It is expected that
bringing charge neutrality in place would cancel this diver-
gence �see below�.

The 2D-periodic case, with finite extent in the z direction,
is calculated in a similar manner. The effective Coulomb
interaction is defined in real space to be 0 outside a slab of
thickness 2R symmetric with respect to the xy plane. In Car-
tesian coordinates, we get

ṽ2D�Gx,Gy,Gz� = �
−R

+R �
−�

+� �
−�

+� e−i�Gxx+Gyy+Gzz�

�x2 + y2 + z2
dzdydx ,

�15�

� 2 2
and, calling G� = Gx +Gy, for Gz ,G� �0, we get
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ṽ2D�G�,Gz� = 8�
0

+R �
0

+�

cos�Gzz�cos�Gyy�K0

	�Gx
�y2 + z2�dzdy

=
4�

G�
�

0

R

cos�Gzz�e−G�zdz ,

and finally33

ṽ2D�G�,Gz� =
4�

G2�1 + e−G�R
Gz

G�

sin�GzR� − e−G�R cos��Gz�R�� .

�16�

In the limit R→� the unscreened potential 4�

G2 is recov-
ered. Similarly to the case of 1D, the limit G→0 does not
exist, since for Gz=0, the cutoff has a finite value, while it
diverges in the limit G�→0

ṽ2D�G�,Gz� �
1

G�
2 for G� � 0, Gz → 0+. �17�

Up to this point we have not committed to a precise value
of the cutoff length R. This value has to be chosen, for each
dimensionality, in such a way that it avoids the interaction of
any two neighbor images of the unit cell in the nonperiodic
dimension.

In order to fix the values of R we must choose the size of
the supercell. This leads us to step �3� of our procedure. We
recall that even once the long-range interaction is cutoff out
of some region around each component of the system, this is
still not sufficient to avoid the interaction among undesired
images. The charge density has to be modified, or, equiva-
lently, the supercell has to be built in such a way that two
neighboring densities along every nonperiodic direction do
not interact via the cutoff interaction.

It is easy to see how this could happen in the simple case
of a 2D square cell of length L: if both r and r� belong to the
cell, then r ,r�
L, and �r−r� � 
�2L. If a supercell is built
that is smaller than �1+�2�L, there could be residual inter-
action, and the cutoff would no longer lead to the exact re-
moval of the undesired interactions.

Let us call A0 the unit cell of the system we are working
with, and A= �Ai , i=−� , . . . ,�� the set of all the cells in the
system. If the system is nD periodic this set only includes the
periodic images of A0 in the n periodic directions. Let us call
B the set of all the nonphysical images of the system, i.e.,
those in the nonperiodic directions. Then A�B=R3. Obvi-
ously, if the system is 3D-periodic A=R3, and B��.

In general we want to allow the interaction of the elec-
trons in A0 with the electrons in all the cells Ai�A, but not
with those Bi�B. To obtain this, we define the supercell
C0�A0 such that its length equals the lattice constant of the
system in the periodic directions, while some amount of
vacuum is added in the nonperiodic directions. The only case
for which C0=A0 is the 3D-periodic case �see Fig. 1 for a
simplified 2D sketch�. The density ñ�r� in the cell C0 satis-
fies the conditions

if r � A then ñ�r� = n�r� ,
0
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if r � C0 and r � A0 then ñ�r� = 0. �18�

The size LC of the super cell in the nonperiodic directions
depends on the periodic dimensionality of the system. In
order to completely avoid any interaction, even in the case
the density of the system is not zero at the cell border, for a
3D system it has to be

LC = �1 + �3�L for the finite case,

LC = �1 + �2�L for the 1D-periodic case,

LC = 2L for the 2D-periodic case. �19�

Actually, since the required super cell is quite large, a com-
promise between speed and accuracy can be achieved in the
computation, using a parallelepiped super cell with LC=2L,
for all cases. This approximation rests on the fact that the
charge density is usually contained in a region smaller than
the cell in the nonperiodic directions, so that the spurious
interactions are, in fact, avoided, even with a smaller cell.
Therefore, on the basis of this approximation, we can choose
the value of the cutoff length R always as half the smallest
primitive vector in the nonperiodic dimension.

Figure 1 schematically illustrates how the supercell is
built for a 2D system in all the possible cases, i.e., 2D peri-

FIG. 1. Schematic description for the supercell construction in a
2D system. The upper sketch corresponds to the 2D-periodic case
�i.e., a 2D bulk crystal�. The middle sketch corresponds to a 0D-
periodic system �i.e., a finite 2D system�, and the bottom one to a
1D-periodic �i.e., an isolated chain�. In the 0D-periodic case the
electrons belonging to different cells do not interact, while in the
1D-periodic a chain does not interact with another, but all the elec-
trons of the chain do interact with each other �see text for details�.
odic, 1D periodic, and 0D periodic. The charge density of the
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system is represented by the circles. Straight lines represent
�super�cell boundaries, while dashed lines reproduce the 2D-
periodic lattice, and are left in place for reference. The upper
sketch corresponds to the 2D-periodic case �i.e., a 2D crystal,
with lattice constant L�. No supercell is needed here. The
middle sketch corresponds to a 1D-periodic system. The in-
teraction between two different chains is quenched, but it is
allowed among all the elements belonging to each chain. The
bottom sketch refers to the 0D-periodic case. None of the
images can interact with the system in the middle supercell.

IV. CANCELLATION OF THE SINGULARITIES

The main point in the procedure of eliminating the diver-
gences in all the cases of interest is to observe that our final
goal is usually not to obtain the expression of the Hartree
potential alone. In fact all the physical quantities depend on
the total potential, i.e., on the sum of the electronic and the
ionic potential. When this sum is considered we can exploit
the fact that each potential is defined up to an arbitrary ad-
ditive constant, and choose the constants consistently for the
two potentials. Since we know in advance that the sum must
be finite, we can include, so to speak, all the infinities into
these constants, provided that we find a method to separate
out the long range part of both potentials on the same foot-
ing.

In what follows we show how charge neutrality can be
exploited to obtain the exact cancellations when operating
with the cutoff expression of Sec. III in Fourier space.

The total potential of the system is built in the following
way: we separate out first short and long range contributions
to the ionic potential by adding and subtracting a Gaussian
charge density n+�r�=Z exp�−a2r2�. The potential generated

by this density is V+�r�=Z
erf�ar�

r . The ionic potential is then
written as

V�r� = �V�r� − V+�r� , �20�

where a is chosen so that �V�r� is localized within a sphere
of radius ra, smaller than the cell size. The expression of the
ionic potential in reciprocal space is

V�G� = �V�G� − V+�G� , �21�

where

�V�G� = 4��
0

+� r sin�Gr�
G

�V�r�dr , �22�

V+�G� =
4�

G2 exp�−
G2

4a2� . �23�

The limit for G=0 gives a finite contribution from the first
term, and a divergent contribution from the second term

lim
G→0

�V�G� = 4��
0

+�

r2�V�r�dr , �24�
-5
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lim
G→0

V+�G� = + � . �25�

The first is the contribution of the localized charge. It is
easily computed, since the integrand is zero for r�ra. The
second term is canceled by the corresponding G=0 term in
the electronic Hartree potential, due to the charge neutrality
of the system. This trivially solves the problem of the diver-
gences in 3D-periodic systems.

Now let us consider a 1D-periodic system. If we take the
general convolution in Eq. �4�, and we perform the Fourier
series expansion along the periodic x direction, we get the
Hartree potential expression

V�x,y,z� = �
Gx

� �
�

n�Gx,y�,z��v�Gx,y − y�,z − z��

	eiGxx�dy�dz�. �26�

Invoking the charge neutrality along the chain axis, we have
that the difference between electron and ionic densities sat-
isfies

� � 
nion�Gx = 0,y,z� − nel�Gx = 0,y,z��dydz = 0. �27�

Unfortunately, the cutoff function in Eq. �13� is divergent for
Gx=0. The effective potential therefore reduces to an unde-
termined 0	� form. However, we can work out an analyti-
cal expression for it by defining first a finite length cylindri-
cal cutoff, but later bringing the size of the cylinder to
infinity. In this way, as a first step, we get a new cutoff
interaction in a finite cylinder of radius R, and length h,
assuming that h is much larger than the cell size in the peri-
odic direction. In this case the modified finite cutoff potential
includes a term

ṽ1D�Gx,r,h� � ln�h + �h2 + r2

r
� , �28�

which, in turn gives, for the plane Gx=0

ṽ1D�Gx = 0,G��  − 4��
0

R

rJ0�G�r�ln�r�dr

+ 4�R ln�2h�
J1�G�R�

G�

. �29�

The effective potential is now split into two terms, of
which only the second one depends on h. The second step is
achieved by going to the limit h→ +�, to obtain the exact
infinite cutoff. By calculating this limit, we notice that only
the second term in the right hand side of Eq. �29� diverges.
This term is the one that can be dropped due to charge neu-
trality �in fact it has the same form for the ionic and elec-
tronic charge densities�. Thus, for the cancellation to be ef-
fective in a practical implementation, we have to treat in the
same way both the ionic and Hartree Coulomb contributions.
The first term on the right hand side of Eq. �29� must always
be taken into account, since it affects both the long and the
short range part of the cutoff potentials.
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Following this procedure, we obtain a considerable com-
putational advantage, over, e.g., the method originally pro-
posed by Spataru et al.,35 since our cutoff is just an analytical
function of the reciprocal space coordinates, and the evalua-
tion of an integral for every value of Gx ,G� is not needed.
The cutoff proposed in Ref. 35 is actually a particular case of
our cutoff, obtained by using the finite cylinder for all the
components of the G vectors: in this case the quadrature in
Eq. �29� has to be evaluated for each Gx, Gy, and Gz, and a
convergence study in h is mandatory �see discussion in Sec.
V B, and Fig. 5�.

In the 1D-periodic case, the G=0 value is now well de-
fined, and it turns out to be limG�→0 ṽ�Gx ,G��

ṽ1D�Gx = 0,G� = 0� = − �R2
2 ln�R� − 1� . �30�

The analogous result for the 2D-periodic cutoff is ob-
tained by imposing finite cutoff sizes hx=hy =h �much
larger than the cell size�, in the periodic directions x and y,
and dropping the h dependent part before passing to the limit
h→ +�. The constant  is the ratio

Lx

Ly
between the in-plane

lattice vectors

ṽ2D�G� = 0,Gz�


4�

Gz
2 
1 − cos�GzR� − GzR sin�GzR��

+ 8h ln� � + �1 + 2��1 + �1 + 2�


� sin�GzR�
Gz

.

�31�

The G=0 value is

ṽ2D�G� = 0,Gz = 0� = − 2�R2. �32�

To summarize, the divergences can be cancelled also in
1D-periodic and 2D-periodic systems provided that �1� we
apply the cutoff function to both the ionic and the electronic
potentials, �2� we separate out the infinite contribution as
shown above, and �3� we properly account for the short
range contributions as stated in Table I. The analytical results
of the present work are condensed in Table I: all possible
values for the cutoff functions are listed there as a quick
reference for the reader.

V. RESULTS

The scheme illustrated above has been implemented both
in the real space time-dependent DFT code OCTOPUS,31 and
in the plane wave many-body-perturbation-theory �MBPT�
code SELF.36 The tests have been performed on the prototypi-
cal cases of infinite chains of atoms along the x axis. We
compare between the 3D-periodic calculation �physically
corresponding to a crystal of chains�, and the 1D-periodic
case �corresponding to the isolated chain� both in the usual
supercell approach, and within our exact screening method.
The discussion for the 2D cases is similar as for the 1D case,
while results for the finite systems have already been re-
ported in the literature.26,30 We addressed different properties
to see the impact of the cutoff at each level of calculation,
-6



EXACT COULOMB CUTOFF TECHNIQUE FOR¼ PHYSICAL REVIEW B 73, 205119 �2006�
from the ground state to excited state and quasiparticle dy-
namics.

A. Ground-state calculations

All the calculations have been performed with the real-
space implementation of DFT in the31 OCTOPUS code. We
have used nonlocal norm-conserving pseudopotentials37 to
describe the electron-ion interaction and the local-density
approximation38 �LDA� to describe exchange-correlation ef-
fects. The particular choice of exchange-correlation or ionic
pseudopotential is irrelevant here as we want to assess the
impact of the Coulomb cutoff and this is independent of
those quantities. The density and the wave functions are rep-
resented in real space using a cubic regular mesh. The spac-
ing between the grid points is 0.38 a.u. �0.2 Å� for Na, which
is the largest spacing that allows us to represent the corre-
sponding pseudopotentials.

In this case, the trace of the interaction of neighboring
chains in the y and z directions is the dispersion of the bands
in the corresponding direction of the Brillouin zone. How-
ever it is known that, if the supercell is large enough, the
bands along the �-X direction are unchanged. This appar-
ently contradicts the fact that the radial ionic potential for a
wire 
that asymptotically goes like ln�r� as a function of the
distance r from the axis of the wire� is completely different
from the crystal potential.

We can resolve the contradiction by performing a cutoff
calculation. In fact, the overall effect of the interaction of
neighboring chains on the ground-state occupied states turns
out to be canceled by the Hartree potential, i.e., by the elec-
tron screening of the ionic potential, but two different sce-
narios become clear as soon as the proper cutoff is used.

TABLE I. Reference table summarizing the results of the cutoff
work for charge-neutral systems: finite systems �0D�, one-dimen-
sional systems �1D� and two-dimensional systems �2D�. The com-
plete reciprocal space expression of the Hartree potential is pro-
vided. For the 1D case, R stands for the radius of the cylindrical
cutoff whereas in the 0D case it is the radius of the spherical cutoff.
In 2D R stands for half the thickness of the slab cutoff �see text for
details�.

G 0D-periodic ṽ0D�G�=
�0 �4� /G2�
1−cos�GR��
0 2�R2

Gx G� 1D-periodic ṽ1D�Gx ,G��=
�0 any �4� /G2�
1+G�RJ1�G�R�K0��Gx�R�

−�Gx�RJ0�G�R�K1��Gx�R��
0 �0 −4��0

RrJ0�G�r�ln�r�dr

0 0 −�R2
2 ln�R�−1�

G� Gz 2D-periodic ṽ2D�G� ,Gz�=
�0 any �4� /G2��1+e−G�R
�Gz /G�� sin�GzR�−cos�GzR���
0 �0 �4� /Gz

2�
1−cos�GzR�−GzR sin�GzR��
0 0 −2�R2
205119
Figure 2 �top� shows the ionic potential, as well as the
Hartree potential and their sum for a Na atom in a parallel-
epiped supercell with side lengths of 7.6, 18.8, and 18.8 a.u.
�4	10	10 Å� respectively in the x, y, and z directions. No
cutoff is used here. The ionic potential behaves roughly like
1
r in the area not too close to the nucleus �where the pseudo-
potential dominates�. The total potential, on the other hand,
falls off rapidly to an almost constant value at around 6 a.u.
from the nuclear position, by effect of the electron screening.

Figure 2 �bottom� shows the results when the cutoff is
applied �the radius of the cylinder is R=18.8 a.u. such that
there is zero interaction between cells�. The ionic potential
now behaves as it is expected to for the potential of a chain,
i.e., diverges logarithmically, and is clearly different from the
latter case. Nevertheless the sum of the ionic and Hartree
potential is basically the same as for the 3D-periodic system.

The two band structures are then expected, and are found
to be the same, confirming that, as far as static calculations
are concerned, the supercell approximation is good, provided
that the supercell is large enough. In static calculations, then,
the use of our cutoff only has the effect of allowing us to
eventually use a smaller supercell, which clearly saves com-
putational time. In the case of the Na-chain, a full 3D calcu-
lation would need a cell size of 38 a.u. �20 Å� whereas the
cutoff calculation would give the same result with a cell size
of 19 a.u. �10 Å�, and k sampling along the chain axis only.
Naturally, when more delocalized states are considered, like
higher energy unoccupied states, larger differences are ob-
served with respect to the supercell calculation.

In Fig. 3 we show the effect of the cutoff on the occupied
and unoccupied states. As expected, the occupied states are
not affected by the use of the cutoff, since the density of the
system within the cutoff radius is unchanged, and the corre-
sponding band is the same as it is found for an ordinary 3D
supercell calculation with the same cell size. However there
is a clear effect on the bands corresponding to unoccupied
states, and the effect is larger the higher the energy of the
states. In fact the high energy states, and the states in the
continuum are more delocalized. Therefore the effect of the
boundary conditions is more important. We obtain the same
result for a Si chain.

To summarize: for the static case, we have computed the
band structure of a single chain in two cases: with no cutoff
in a wide supercell, and with cutoff in a much smaller super-
cell, and without k points sampling in the direction perpen-
dicular to the chain axis. We might think as the wide super-
cell calculation as a reference �provided a rigid shift in the
energy values is allowed�, even though the convergence to
the actual physical values of the isolated system is well
known to be very slow. We obviously must keep the periodic
boundary conditions along the axis, but in the other direc-
tions we have applied zero boundary conditions. In this situ-
ation the comparison between the two band structures makes
sense only up to some energy, which, in turn, depends on the
cell size. Above that energy box states appear in the cutoff
calculation, and the two band structures start differing. For-
tunately, since the ground-state properties of the system de-
pend uniquely on its density, it is sufficient to obtain an
agreement in all the occupied states. The wider the supercell
-7
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in the nonperiodic direction, the higher in energy becomes
the agreement between the two calculations.

As an example of the same situation in the 2D-periodic
case we have computed the band structure of a sheet of Na
atoms, both in the periodic supercell approximation, and us-
ing the cutoff scheme. The results are shown in Fig. 4. The
discussion and the conclusions are analogous to the 1D-
periodic case: a band structure calculation with planar cutoff
in a 7.6	7.6	18.8 a.u. �4	4	10 Å� wide cell gives the
same lowest energy bands as a calculation with no cutoff in
a 7.6	7.6	38 a.u. supercell. Bounding box effects modify
the unoccupied states.

As a concluding remark for this section, we stress that the
only purpose of the cutoff technique is to remove the spuri-
ous effect of the Coulomb interaction in the nonperiodic di-
rections of a system, independently of the nature of the sur-
rounding medium. In order to focus on this effect we have
tested the cutoff using zero boundary conditions in the non-
periodic directions. On the other hand the combined use of a
cutoff together with suitably defined boundary conditions
would allow one to address a larger set of cases, such as the
case of defects in bulk solids away from the surface, etc. The
derivation of the boundary conditions that suit each class of
problems, however, is not part of the cutoff problem, and it is
not addressed in what follows.

B. Static polarizability

After the successful analysis of the ground state properties

FIG. 2. Calculated total and ionic and Hartree potentials for a
3D-periodic �top� and 1D-periodic �bottom� Na chain.
with the cutoff scheme, we have applied the modified Cou-

205119
lomb potential to calculate the static polarizability of an in-
finite chain in the random phase approximation �RPA�. As a
test case, we have considered a chain made of hydrogen
atoms, two atoms per cell at a distance of 2 a.u. �1.06 Å�.
The lattice parameter was 4.5 a.u. �2.4 Å�. For this system
we have also calculated excited-state properties in many-
body perturbation theory, in particular, the quasiparticle gap
in Hedin’s GW approximation6 and the optical absorption
spectra in the Bethe-Salpeter framework7,39 �see sections be-
low�. All these calculations have been performed in the code
SELF.36 The polarizability for the monomer, which is a finite
system, in the RPA including local field effects is defined as

 = − lim
q→0

1

q2�00�q�
�

4�
, �33�

where �GG��q� is the interacting polarization function that is
a solution of the Dyson-like equation

FIG. 3. Effect of the cutoff in a Na linear chain in a supercell
size of 7.5	19	19 a.u. The bands obtained with an ordinary su-
percell calculation with no cutoff �dashed lines� are compared to the
bands obtained applying the 1D cylindrical cutoff �solid line�. As is
explained in the text, only the unoccupied levels are affected by the
cutoff.

FIG. 4. Band structure of a planar sheet of Na atoms in a super-
cell size of 7.5	7.5	19 a.u. The bands with and without cutoff
are identical for all the occupied states. The unoccupied states are

influenced by different boundary conditions.
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�GG��q� = �GG�
0 �q� + �

G�

�GG�
0 �q�v�q + G���G�G��q� ,

�34�

and �0 is the noninteracting polarization function obtained by
the Adler-Wiser expression.40 v�q+G� are the Fourier com-
ponents of the Coulomb interaction. Note that the expression
for  in Eq. �33� is also valid for calculations in finite sys-
tems, in the supercell approximation, and the dependence on
the wave vector q is due to the representation in reciprocal
space.

In the top panel of Fig. 5, we compare the values of the
calculated polarizability  for different supercell sizes.  is
calculated both using the bare Coulomb v�q+G�= 4�

�q+G�2 and
the modified cutoff potential of Eq. �13� �the radius of the
cutoff is always set to half the interchain distance�. The lat-
tice constant along the chain axis is kept fixed. Using the
cutoff, the static polarizability already converges to the
asymptotic value with an interchain distance of 25 a.u.
�13.2 Å�. Without the cutoff the convergence is much slower,
and the exact value is approximated to the same accuracy for
much larger cell sizes �beyond the calculations shown in the
top of Fig. 5�.

We must stress the fact that the treatment of the diver-
gences in this case is different with respect to the case of the
Hartree and ionic potential cancellation for ground-state cal-
culations �i.e., charge neutrality�. In fact, while in the calcu-
lation of the Hartree and ionic potential the divergent terms
are simply dropped by virtue of the neutralizing positive
background, here the h dependence in Eq. �29� can be re-
moved only for the head component by virtue of the vanish-
ing limit limq→0�00

0 �q�=0, while for the other Gx=0 compo-
nents we have to resort to the expression of the finite
cylindrical cutoff as in Eq. �29�.

A finite version of the 1D cutoff has been recently applied
to nanotube calculations.35,41 This cutoff was obtained by
numerically truncating the Coulomb interaction along the
axis of the nanotube, in addition to the radial truncation.
Therefore, the effective interaction is limited to a finite cyl-
inder, whose size can be up to a hundred times the unit cell
size, depending on the density of the k point sampling along
the axis.5 The cutoff axial length has to be larger than the
expected bound exciton length.

In the bottom part of Fig. 5 we compare the results ob-
tained with our analytical cutoff 
Eq. �13�� with its finite
special case proposed in Ref. 35. We observe that the value
of the static polarizability calculated with the finite cutoff
oscillates around an asymptotic value, for increasing axial
cutoff lengths. The asymptotic value exactly coincides with
the value obtained with our cutoff. We stress the fact that we
also resort to the finite form of the cutoff only to handle the
diverging of components of the potential. Thus we note that
there is a clear numerical advantage in using our expression,
since the cutoff is analytical for all values except at Gx=0,
and the corresponding quadrature has to be numerically
evaluated for these points only. In the inset of the bottom part
of Fig. 5, the convergence of the polarizability obtained with
205119
our cutoff with respect to the k point sampling is also shown.
The sampling is unidimensional along the axial direction.
Observe that the calculation using our cutoff is already con-
verged for a sampling of 20 k points. In the upper axis, we
also indicate the corresponding maximum allowed value of
the finite cutoff length in the axial direction that has been
used to calculate the Gx=0 components.

Finite-size effects turn out to be also relevant for many-
body perturbation theory calculations. For the same test sys-
tem �linear H2 chain�, in the next two sections, we consider
the performance of our cutoff potential for the calculation of
the quasiparticle energies in6 GW approximation and of the

7,39

FIG. 5. Top: Polarizability per unit cell of an H2 chain in RPA as
a function of the inverse supercell volume. The solid line extrapo-
lates the values obtained with the cutoff potential, while the dashed
lines extrapolates the values obtained with the bare Coulomb poten-
tial. The cutoff radius is 8.0 a.u. �4.2 Å�. The interchain distance is
indicated in the top axis. Bottom: Polarizability of the H2 chain
calculated with the finite cutoff potential of Ref. 35. In abscissa
different values of the cutoff length along the chain axis. The
dashed straight line indicates the value obtained with the cutoff of
Eq. �13�. In the inset we show the convergence of the polarizability
with respect to the k points sampling along the chain axis obtained
with the cutoff of Eq. �13�. In the upper axis it is indicated the
maximum allowed length h for each k point sampling used in the
calculation of the Gx=0 components by Eq. �29�.
absorption spectra in the Bethe-Salpeter framework.
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1. Quasiparticles in the GW approximation

In the GW approximation, the nonlocal energy-dependent
electronic self-energy � plays a role similar to that of the
exchange-correlation potential of DFT. � is approximated by
the convolution of the one-electron Green’s function and the
dynamically screened Coulomb interaction W. We first cal-
culate the ground state electronic properties using the DFT
code ABINIT.42 These calculation are performed in38 LDA
with pseudopotentials.37 An energy cutoff of 816 eV
�30 hartree� has been used to get converged results. The
LDA eigenvalues and eigenfunctions are then used to con-
struct the RPA screened Coulomb interaction W, and the GW
self-energy. The inverse dielectric matrix �G,G�

−1 has been cal-
culated using the plasmon-pole approximation43 and the qua-
siparticle energies have been calculated to first order in �
−Vxc.

44 Dividing the self-energy into an exchange part �x
and a correlation part �c ��� j

DFT����i
DFT�= �� j

DFT��x��i
DFT�

+ �� j
DFT��c��i

DFT��, we get the following representation for
the self-energy in a plane-wave basis set

�nk��x�r1,r2��n�k�� = − �
n1

�
Bz

d3q

�2��3�
G

v�q + G�

	�nn1
�q,G��n�n1

� �q,G�fn1k1
, �35�

and

�nk��c�r1,r2,���n�k��

=
1

2�
n1

�
Bz

d3q

�2��3��
GG�

v�q + G���nn1
�q,G�

	�n�n1

� �q,G�� � d��

2�
�GG�

−1 �q,���

	� fn1�k−q�

� − �� − �n1�k−q�
LDA − i�

+
1 − fn1�k−q�

� − �� − �n1�k−q�
LDA + i��� ,

�36�

where �nn1
�q+G�= �nk�ei�q+G�·r1�n1k1� and the integral in the

frequency domain in Eq. �36� has been analytically solved
considering the dielectric matrix in the plasmon pole mode:
(�G,G�

−1 ���=�G,G�+�G,G� / ��2− �̃G,G�
2 �).

In order to eliminate the spurious interaction between dif-
ferent supercells, leaving the bare Coulomb interaction un-
changed along the chain direction, we simply introduce the
expression of Eq. �13� in the construction of �x and �c, and
also in the calculation of �GG�

−1 . As in the calculation of the
static polarizability, the divergences appearing in the compo-
nents �Gx=0� cannot be fully removed and for such compo-
nents we resort to the finite version of the cutoff potential Eq.
�29�.

In Fig. 6 we calculate the convergence of the quasiparticle
gap at the X point for different supercell sizes in the GW
approximation. A cutoff radius of 8.0 a.u. has been used.
When the cutoff potential is used, 60 k points in the axis
direction has been necessary to get converged results. In the
inset of Fig. 6, we show the behavior of the quasiparticle gap
205119-
as a function of the cutoff radius. We observe that for Rc
�6 a.u. �3.17 Å� a plateau is reached, and, for Rc�12 a.u.,
a small oscillation appears due to interaction between the
tails of the charge density of the system with its image in the
neighboring cell. Unlike the DFT-LDA, calculation for neu-
tral systems, where the supercell approximation turns out to
be good, as we have discussed above, we can see that the
convergence of the GW quasiparticle correction turns out to
be extremely slow with respect to the size of the supercell
and huge supercells are needed in order to get converged
results. This is due to the fact that in the GW calculation the
addition of an electron �or a hole� to the system induces
charge oscillation in the periodic images as well. It is impor-
tant to note that the slow convergence is caused by the cor-
relation part of the self-energy 
Eq. �36��, while the exchange
part is rapidly convergent with respect to the cell size. The
use of the cutoff Coulomb potential improves the conver-
gence drastically as is evident from Fig. 6. Note that even at
38 a.u., the interchain distance the GW gap is underestimated
by about 0.5 eV. A similar trend �but with smaller variations�
has been found by Onida et al.,32 for a finite system �Sodium
Tetramer� using the cutoff potential of Eq. �11�. Clearly,
there is a strong dimensionality dependence of the self-
energy correction. The nonmonotonic behavior versus di-
mensionality of the self-energy correction has also been
pointed out in Ref. 45 where the gap correction was shown
to have a strong component of the surface polarization.

2. Exciton binding energy: Bethe-Salpeter equation

Starting from the quasiparticle energies, we have calcu-
lated the optical absorption spectra including electron-hole
interactions calculated with the Bethe-Salpeter equation.39

The basis set used to describe the exciton state is composed
of product states of the occupied and unoccupied LDA single
particle states and the coupled electron-hole excited states
�S�=�cvkAcvkack

† avk�0�, where �0� is the ground state of the
system. Acvk is the probability amplitude of finding an ex-
cited electron in the state �ck� and a hole in �vk�. It satisfies
the equation

��ck
QP − �vk

QP�Avck + �
vck,v�c�k�

Kvck,v�c�k�Av�c�k� = ESAvck.

�37�

ES is the excitation energy of the state �S� and K the interac-
tion kernel that includes an unscreened exchange repulsive
term KExch and a screened electron-hole interaction Kdir �di-
rect term�. In the plane-wave basis such terms read

K�vck,v�c�k��
Exch =

2

�
�

G�0
v�G��ck�eiG·r�vk��v�k��e−iG�·r�c�k�� ,

�38�

K�vck,v�c�k��
dir =

1

�
�

G,G�

v�q + G��GG�
−1 �q��ck�ei�q+G�·r�c�k��

	�v�k��e−i�q+G��·r�vk��q.k−k . �39�
�
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The screened potential has been treated in static RPA ap-
proximation �dynamical effects in the screening have been
neglected as it is usually done in recent Bethe-Salpeter
calculations39�. The quasiparticle energies in the diagonal
part of the Hamiltonian in Eq. �37� are obtained by applying
a scissor operator to the LDA energies. This is because in the
studied test case the main difference between the quasiparti-
cle and LDA band structure consists of a rigid energy shift of
energy bands. From the solution of the Bethe-Salpeter equa-
tion 
Eq. �37��, it is possible to calculate the macroscopic
dielectric function. In particular, the imaginary part reads

�2��� =
1

�

4�2e2

�2 �
S
��

vck
Avck

S �vk�� · ��ck��2
��ES − ��� ,

�40�

where the summation runs over all the vertical excitations
from the ground state �0� to the excited state �S�. ES is the
corresponding excitation energy, � is the velocity operator
and � is the polarization vector. As in the case of the GW
calculation, in order to isolate the chain, we substitute the
cutoff potential of Eq. �13� both in the exchange term Eq.
�38� and in the direct term of the Bethe-Salpeter equation,
Eq. �39�, as well as for the RPA dielectric matrix in Eq. �39�.

In the top part of Fig. 7, we show the calculated spectra
for different cell sizes together with the noninteracting spec-
trum, and the spectrum obtained using the cutoff Coulomb
potential for an interchain distance larger than 20 a.u.
�10.6 Å� and cylindrical cutoff radius of 8 a.u. The scissor
operator applied in this calculation is the same for all the
volumes and correspond to the converged GW gap.

FIG. 6. Convergence of the GW quasiparticle gap for the H2

chain as a function of the inverse of the cell size, using the bare
Coulomb potential �dashed line� and the cutoff potential �solid line�.
In the inset the behavior of the GW quasiparticle gap as a function
of the value of the cutoff radius for a supercell with inter-chain
distance of 32 a.u. �17 Å� is shown. The plateau obtained around a
radius of 8 a.u. �i.e., one fourth of the supercell size� corresponds to
the situation in which the radial images of chains no longer mutu-
ally interact, and the calculation is converged. Increasing the radius
above approximately 12 a.u. the interaction is back and produces
oscillations in the value of the gap.
205119-
As it is known, the electron-hole interaction modifies both
the shape and the energy of the main absorption peak. This
effect is related to the the slow evolution of the polarizability
per H2 unit.46 Furthermore, the present results clearly illus-
trate that the spectrum calculated without the cutoff slowly
converges towards the exact result. This is highlighted in the
bottom panel of Fig. 7 where we show the dependence of the
exciton binding energy on the supercell volume, the binding
energy being defined as the energy difference between the
excitonic peak and the optical gap. We observe that the effect
of the interchain interaction consists in reducing the binding
energy with respect to its value in the isolated system. This
value is slowly approached as the interchain distance in-
creases, while, once the cutoff is applied to the Coulomb
potential, the limit is reached as soon as the densities of the
system and its periodic images do not interact. If we consider
the convergence of the quasiparticle gap and of the binding
energy with respect to the cell volume we notice that, if a
cutoff is not used, the position of the absorption peak is

FIG. 7. Top: Photo absorption cross section of a linear chain of
H2 for different supercell volumes. In the legend the interchain
distances corresponding to each volume are indicated. The intensity
has been normalized to the volume of the supercell. The noninter-
acting absorption spectra and the spectra obtained with the cutoff
potential are also included. Bottom: exciton binding energy vs su-
percell volume calculated using the cut off potential �solid line�, and
the bare Coulomb potential �dashed line�.
controlled by the convergence of the Bethe-Salpeter equation
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solution, which, in turn, depends on the �slower� conver-
gence of the GW energies. It is clear from Fig. 6 that the use
of the cutoff allows us to considerably speed up this bottle-
neck.

The use of our cutoff also has an important effect on the
Brillouin zone sampling. In Fig. 8 we show the value of
�00

−1�qx ,qy� in the qz=0 plane for a supercell corresponding to
an interchain distance of 25 a.u. �13.23 Å�. When the cutoff
potential is used �bottom panel� the screening is smaller,
compared to the case of the bare potential �top panel�. Look-
ing at the direction perpendicular to the chain �the chain axis
is along the x direction� we see that the dielectric matrix is
approximately constant, and this fact allows us to sample the

FIG. 8. Values of �00
−1�qx ,qy� in the qz=0 plane for the H2 chain

with an interchain distance of 25 a.u., using the bare Coulomb �top�
and the cutoff potential �bottom�. The axis of the chain is along the
x direction.
Brillouin zone only in the direction of the chain axis. For

205119-
both the GW and Bethe-Salpeter calculations a three dimen-
sional sampling of the Brillouin zone is needed to get con-
verged results when no cutoff is used, while a simple one-
dimensional sampling can be adopted when the interaction is
cut off.

VI. CONCLUSIONS

An infinite system is an artifact that allows us to exploit
the powerful symmetry properties of an ideal system to ap-
proximate the properties of a finite one that is too large to be
simulated at once. In order to use the valuable supercell ap-
proximation for systems that are periodic in less than three
dimensions some cutoff techniques are required. The tech-
nique presented here provides a recipe to build the supercell,
together with a Coulomb potential in Fourier space in such a
way that the interactions with all the undesired images of the
system are canceled. This technique is exact for the supercell
sizes given and can in most cases be well approximated us-
ing supercells whose length is twice that of the system size in
the nonperiodic dimensions. The method is very easily
implemented in all available codes that use the supercell
scheme, and is independent of the adopted basis set. We have
tested it both in a real space code for LDA band-structure
calculation of an atomic chain, and a plane wave code, for
the static polarizability in RPA approximation, GW quasipar-
ticle correction, and photoabsorption spectra in the Bethe-
Salpeter scheme, showing that the convergence with respect
to volume of the empty space needed to isolate the system
from its images is greatly enhanced, and the sampling of the
Brillouin zone is greatly reduced, being only necessary along
the periodic directions of the system.
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