2,690 research outputs found

    Stretching Folding Instability and Nanoemulsions

    Full text link
    Here we show a folding-stretching instability in a microfluidic flow focusing device using silicon oil (100cSt) and water. The fluid dynamics video demonstrates an oscillating thread of oil focused by two co-flowing streams of water. We show several high-speed sequences of these oscillations with 30,000 frames/s. Once the thread is decelerated in a slower moving pool downstream an instability sets in and water-in-oil droplets are formed. We reveal the details of the pinch-off with 500,000 frames/s. The pinch-off is so repeatable that complex droplet patterns emerge. Some of droplets are below the resolution limit, thus smaller than 1 micrometer in diameter

    Intraoperative hyperglycemia augments ischemia reperfusion injury in renal transplantation: a prospective study.

    Get PDF
    Background. Diabetes is a risk factor for delayed graft function in kidney transplantation, and hyperglycemia increases ischemia reperfusion injury in animal models. Methods. To explore the role of perioperative hyperglycemia in ischemia reperfusion injury, we conducted a prospective study of 40 patients undergoing living donor renal transplantation. Blood glucose levels were monitored intraoperatively, and serum samples were obtained at the time anesthesia was induced and one hour after allograft reperfusion. The percentage change in neutrophil gelatinase-associated lipocalin (NGAL), a protein whose expression is increased with renal ischemia, was then used to determine the extent of injury. Results. In a multivariate model including recipient, donor, and transplant factors, recipient blood glucose >160 mg/dL at the time of allograft reperfusion (β 0.19, P-value < 0.01), warm ischemia time >30 minutes (β 0.11, P-value 0.13), and recipient age (β 0.05, P-value 0.05) were associated with percentage change in NGAL. These same predictors were associated with the percentage change in creatinine on postoperative day 2. Conclusions. Hyperglycemia is associated with increased ischemic injury in renal transplantation. Both creatinine and NGAL, a marker of ischemic injury and renal function, fall less rapidly in patients with elevated blood glucose

    The Metalloprotease Meprin β Is an Alternative β-Secretase of APP

    Get PDF
    The membrane bound metalloprotease meprin β is important for collagen fibril assembly in connective tissue formation and for the detachment of the intestinal mucus layer for proper barrier function. Recent proteomic studies revealed dozens of putative new substrates of meprin β, including the amyloid precursor protein (APP). It was shown that APP is cleaved by meprin β in distinct ways, either at the β-secretase site resulting in increased levels of Aβ peptides, or at the N-terminus releasing 11 kDa, and 20 kDa peptide fragments. The latter event was discussed to be rather neuroprotective, whereas the ectodomain shedding of APP by meprin β reminiscent to BACE-1 is in line with the amyloid hypothesis of Alzheimer's disease, promoting neurodegeneration. The N-terminal 11 kDa and 20 kDa peptide fragments represent physiological cleavage products, since they are found in human brains under different diseased or non-diseased states, whereas these fragments are completely missing in brains of meprin β knock-out animals. Meprin β is not only a sheddase of adhesion molecules, such as APP, but was additionally demonstrated to cleave within the prodomain of ADAM10. Activated ADAM10, the α-secretase of APP, is then able to shed meprin β from the cell surface thereby abolishing the β-secretase activity. All together meprin β seems to be a novel player in APP processing events, even influencing other enzymes involved in APP cleavage

    An increase in TcT_c under hydrostatic pressure in the superconducting doped topological insulator Nb0.25_{0.25}Bi2_2Se3_3

    Full text link
    We report an unexpected positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator \NBS via dcdc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues \CBS and \SBS where smooth suppression of TcT_c is observed. Our results are consistent with recent Ginzburg-Landau theory predictions of a pressure-induced enhancement of TcT_c in the nematic multicomponent EuE_u state proposed to explain observations of rotational symmetry breaking in doped Bi2_2Se3_3 superconductors.Comment: 5 pages, 5 figure
    corecore