393 research outputs found

    Verifying RoboCup Teams

    Get PDF
    Pocreeding of: 5th International Workshop on Model Checking and Artificial Intelligence. MOCHART-2008, Patras, Greece, july, 21st, 2008.Verification of multi-agent systems is a challenging task due to their dynamic nature, and the complex interactions between agents. An example of such a system is the RoboCup Soccer Simulator, where two teams of eleven independent agents play a game of football against each other. In the present article we attempt to verify a number of properties of RoboCup football teams, using a methodology involving testing. To accomplish such testing in an efficient manner we use the McErlang model checker, as it affords precise control of the scheduling of the agents, and provides convenient access to the internal states and actions of the agents of the football teams.This work has been partially supported by the FP7-ICT-2007-1 project ProTest (215868), a Ramón y Cajal grant from the Spanish Ministerio de Educación y Ciencia, and the Spanish national projects TRA2007-67374-C02-02, TIN2006-15660-C02- 02 (DESAFIOS) and S-0505/TIC/0407 (PROMESAS).Publicad

    Model for Glass Transition in a Binary fluid from a Mode Coupling approach

    Get PDF
    We consider the Mode Coupling Theory (MCT) of Glass transition for a Binary fluid. The Equations of Nonlinear Fluctuating Hydrodynamics are obtained with a proper choice of the slow variables corresponding to the conservation laws. The resulting model equations are solved in the long time limit to locate the dynamic transition. The transition point from our model is considerably higher than predicted in existing MCT models for binary systems. This is in agreement with what is seen in Computer Simulation of binary fluids. fluids.Comment: 9 Pages, 3 Figure

    Psychophysiology-based QoE assessment : a survey

    Get PDF
    We present a survey of psychophysiology-based assessment for quality of experience (QoE) in advanced multimedia technologies. We provide a classification of methods relevant to QoE and describe related psychological processes, experimental design considerations, and signal analysis techniques. We summarize multimodal techniques and discuss several important aspects of psychophysiology-based QoE assessment, including the synergies with psychophysical assessment and the need for standardized experimental design. This survey is not considered to be exhaustive but serves as a guideline for those interested to further explore this emerging field of research

    A quantitative test of the mode-coupling theory of the ideal glass transition for a binary Lennard-Jones system

    Full text link
    Using a molecular dynamics computer simulation we determine the temperature dependence of the partial structure factors for a binary Lennard-Jones system. These structure factors are used as input data to solve numerically the wave-vector dependent mode-coupling equations in the long time limit. Using the so determined solutions, we compare the predictions of mode-coupling theory (MCT) with the results of a previously done molecular dynamics computer simulation [Phys. Rev. E 51, 4626 (1995), ibid. 52, 4134 (1995)]. From this comparison we conclude that MCT gives a fair estimate of the critical coupling constant, a good estimate of the exponent parameter, predicts the wave-vector dependence of the various nonergodicity parameters very well, except for very large wave-vectors, and gives also a very good description of the space dependence of the various critical amplitudes. In an attempt to correct for some of the remaining discrepancies between the theory and the results of the simulation, we investigate two small (ad hoc) modifications of the theory. We find that one modification gives a worse agreement between theory and simulation, whereas the second one leads to an improved agreement.Comment: Figures available from W. Ko

    Critical Decay at Higher-Order Glass-Transition Singularities

    Full text link
    Within the mode-coupling theory for the evolution of structural relaxation in glass-forming systems, it is shown that the correlation functions for density fluctuations for states at A_3- and A_4-glass-transition singularities can be presented as an asymptotic series in increasing inverse powers of the logarithm of the time t: ϕ(t)figi(x)\phi(t)-f\propto \sum_i g_i(x), where gn(x)=pn(lnx)/xng_n(x)=p_n(\ln x)/x^n with p_n denoting some polynomial and x=ln (t/t_0). The results are demonstrated for schematic models describing the system by solely one or two correlators and also for a colloid model with a square-well-interaction potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted

    Density fluctuations and single-particle dynamics in liquid lithium

    Full text link
    The single-particle and collective dynamical properties of liquid lithium have been evaluated at several thermodynamic states near the triple point. This is performed within the framework of mode-coupling theory, using a self-consistent scheme which, starting from the known static structure of the liquid, allows the theoretical calculation of several dynamical properties. Special attention is devoted to several aspects of the single-particle dynamics, which are discussed as a function of the thermodynamic state. The results are compared with those of Molecular Dynamics simulations and other theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.

    Effect of Composition Changes on the Structural Relaxation of a Binary Mixture

    Full text link
    Within the mode-coupling theory for idealized glass transitions, we study the evolution of structural relaxation in binary mixtures of hard spheres with size ratios δ\delta of the two components varying between 0.5 and 1.0. We find two scenarios for the glassy dynamics. For small size disparity, the mixing yields a slight extension of the glass regime. For larger size disparity, a plasticization effect is obtained, leading to a stabilization of the liquid due to mixing. For all δ\delta, a decrease of the elastic moduli at the transition due to mixing is predicted. A stiffening of the glass structure is found as is reflected by the increase of the Debye-Waller factors at the transition points. The critical amplitudes for density fluctuations at small and intermediate wave vectors decrease upon mixing, and thus the universal formulas for the relaxation near the plateau values describe a slowing down of the dynamics upon mixing for the first step of the two-step relaxation scenario. The results explain the qualitative features of mixing effects reported by Williams and van Megen [Phys. Rev. E \textbf{64}, 041502 (2001)] for dynamical light-scattering measurements on binary mixtures of hard-sphere-like colloids with size ratio δ=0.6\delta=0.6

    Phase diagram of the metal-insulator transition in 2D electronic systems

    Full text link
    We investigated the interdependence of the effects of disorder and carrier correlations on the metal-insulator transition in two-dimensional electronic systems. We present a quantitative metal-insulator phase diagram. Depending on the carrier density we find two different types of metal-insulator transition - a continuous localization for rs=<8 and a discontinuous transition at higher rs. The critical level of disorder at the transition decreases with decreasing carrier density. At very low carrier densities we find that the system is always insulating. The value of the conductivity at the transition is consistent with recent experimental measurements. The self-consistent method which we have developed includes the effects of both disorder and correlations on the transition, using a density relaxation theory with the Coulomb correlations determined from numerical simulation data.Comment: 4 pages, RevTeX + epsf, 5 figures. New comments on conducting phase and on the conductivity. References updated and correcte
    corecore