48 research outputs found
The Future of Biologic Agents in the Treatment of Sjögren’s Syndrome
The gain in knowledge regarding the cellular mechanisms of T and B lymphocyte activity in the pathogenesis of Sjögren’s syndrome (SS) and the current availability of various biological agents (anti-TNF-α, IFN- α, anti-CD20, and anti-CD22) have resulted in new strategies for therapeutic intervention. In SS, various phase I and II studies have been performed to evaluate these new strategies. Currently, B cell-directed therapies seem to be more promising than T cell-related therapies. However, large, randomized, placebo-controlled clinical trials are needed to confirm the promising results of these early studies. When performing these trials, special attention has to be paid to prevent the occasional occurrence of the severe side effects
Type I Interferon: Potential Therapeutic Target for Psoriasis?
Background: Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. Methodology/Principal Findings: We observed robust overexpression of type I interferon (IFN)–inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-a subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN–inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-c and TNF-a–inducible gene signatures occurred at the same disease sites. Conclusions/Significance: Up-regulation of TNF-a and elevation of the TNF-a–inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti–TNF-a agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may b
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
Linkage of Type I Interferon Activity and TNF-Alpha Levels in Serum with Sarcoidosis Manifestations and Ancestry
BACKGROUND: Both type I interferon (IFN), also known as IFN-α and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of sarcoidosis. We investigated serum levels of these cytokines in a large multi-ancestral sarcoidosis population to determine correlations between cytokine levels and disease phenotypes. METHODS: We studied serum samples from 98 patients with sarcoidosis, including 71 patients of African-American ancestry and 27 patients of European-American ancestry. Serum type I IFN was measured using a sensitive reporter cell assay and serum TNF-α was measured using a commercial ELISA kit. Clinical data including presence or absence of neurologic, cardiac, and severe pulmonary manifestations of sarcoidosis were abstracted from medical records. Twenty age-matched non-autoimmune controls were also studied from each ancestral background. Differences in cytokine levels between groups were analyzed with Mann-Whitney U test, and correlations were assessed using Spearman's rho. Multivariate logistic regression models were used to detect associations between cytokines and clinical manifestations. RESULTS: Significant differences in cytokine levels were observed between African- and European-American patients with sarcoidosis. In African-Americans, serum TNF-α levels were significantly higher relative to matched controls (P = 0.039), and patients with neurologic disease had significantly higher TNF-α than patients lacking this manifestation (P = 0.022). In European-Americans, serum type I IFN activity was higher in sarcoidosis cases as compared to matched controls, and patients with extra-pulmonary disease represented a high serum IFN subgroup (P = 0.0032). None of the associations observed were shared between the two ancestral groups. CONCLUSIONS: Our data indicate that significant associations between serum levels of TNF-α and type I IFN and clinical manifestations exist in a sarcoidosis cohort that differ significantly by self-reported ancestry. In each ancestral background, the cytokine elevated in patients with sarcoidosis was also associated with a particular disease phenotype. These findings may relate to ancestral differences in the molecular pathogenesis of this heterogeneous disease
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
Type I IFN and TNFα cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance
A cross-regulation between type I IFN and TNFα has been proposed recently, where both cytokines are hypothesized to counteract each other. According to this model, different autoimmune diseases can be viewed as disequilibrium between both cytokines. As this model may have important clinical implications, the present review summarizes and discusses the currently available clinical evidence arguing for or against the proposed cross-regulation between TNFα and type I IFN. In addition, we review how this cross-regulation works at the cellular and molecular levels. Finally, we discuss the clinical relevance of this proposed cross-regulation for biological therapies such as type I IFN or anti-TNFα treatment
Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity
Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity