2,280 research outputs found

    Purifying and Reversible Physical Processes

    Get PDF
    Starting from the observation that reversible processes cannot increase the purity of any input state, we study deterministic physical processes, which map a set of states to a set of pure states. Such a process must map any state to the same pure output, if purity is demanded for the input set of all states. But otherwise, when the input set is restricted, it is possible to find non-trivial purifying processes. For the most restricted case of only two input states, we completely characterize the output of any such map. We furthermore consider maps, which combine the property of purity and reversibility on a set of states, and we derive necessary and sufficient conditions on sets, which permit such processes.Comment: 5 pages, no figures, v2: only minimal change

    Optical spectroscopic study of the interplay of spin and charge in NaV2O5

    Get PDF
    We investigate the temperature dependent optical properties of NaV2O5, in the energy range 4meV-4eV. The symmetry of the system is discussed on the basis of infrared phonon spectra. By analyzing the optically allowed phonons at temperatures below and above the phase transition, we conclude that a second-order change to a larger unit cell takes place below 34 K, with a fluctuation regime extending over a broad temperature range. In the high temperature undistorted phase, we find good agreement with the recently proposed centrosymmetric space group Pmmn. On the other hand, the detailed analysis of the electronic excitations detected in the optical conductivity, provides direct evidence for a charge disproportionated electronic ground-state, at least on a locale scale: A consistent interpretation of both structural and optical conductivity data requires an asymmetrical charge distribution on each rung, without any long range order. We show that, because of the locally broken symmetry, spin-flip excitations carry a finite electric dipole moment, which is responsible for the detection of direct two-magnon optical absorption processes for E parallel to the a axis. The charged-magnon model, developed to interpret the optical conductivity of NaV2O5, is described in detail, and its relevance to other strongly correlated electron systems, where the interplay of spin and charge plays a crucial role in determining the low energy electrodynamics, is discussed.Comment: Revtex, 19 pages, 16 postscript pictures embedded in the text, submitted to PRB. Find more stuff at http://www.stanford.edu/~damascel/andreaphd.html or http://www.ub.rug.nl/eldoc/dis/science/a.damascelli

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    Single nucleotide polymorphism (rs1035130C>T) in the interleukin 18 receptor 1 gene and susceptibility to severe P. falciparum malaria in Lafia, North-central Nigeria

    Get PDF
    The interleukin 18 receptor 1 (IL18R1) gene encodes a potent cytokine receptor that is critical for IL18 binding and subsequent signal transduction. This gene is a member of the IL1 receptor family that resides in a cluster of genes on human chromosome 2. Several polymorphisms have been shown to exist on this gene locus and some were found to be associated with inflammatory diseases but there is paucity of data on association with malaria. This study therefore, was aimed at determining the possible association of the rs1035130C>T coding polymorphism with severe malaria in Lafia, North-central Nigeria. The rs1035130C>T polymorphism was genotyped in a total of 214 participants including 98 severe malaria cases and 116 asymptomatic controls. DNA was extracted from blood spotted on filter paper using the QIAamp® DNA Mini Kit. The ABI PRISM® 3100 Genetic Analyzer was used to sequence the polymorphic locus. Our data showed a significantly higher frequency (P=0.021) of the CT heterozygous genotype in the asymptomatic control group (25.0%) than in the severe malaria group (13.27%). In addition, the frequency of the minor T allele was significantly higher (P=0.013) in the asymptomatic controls compared to the severe malaria cases. However, the TT homozygous genotype was not found in the severe malaria group. These results suggest a contributory role of the rs1035130C>T polymorphism in regulating host susceptibility or resistance to severe malaria and consequently have implications for understanding the molecular mechanisms of malaria pathogenesis.Keywords: Malaria, Interleukin, rs1035130C>T, Polymorphism, Genotype

    Tectono-stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting

    Get PDF
    The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia–Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic–Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4–16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow

    Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K<sup>+</sup> buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression.</p> <p>Methods</p> <p>We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (<it>n</it> = 64), comparing the expression in tumor patients with (<it>n</it> = 38) and without epilepsy (<it>n</it> = 26).</p> <p>Results</p> <p>Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1).</p> <p>Conclusions</p> <p>Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.</p

    Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO2 Polycrystalline Films

    Get PDF
    We present a detailed study on polycrystalline transparent conducting Ta-doped TiO2 films, obtained by room temperature pulsed laser deposition followed by an annealing treatment at 550°C in vacuum. The effect of Ta as a dopant element and of different synthesis conditions are explored in order to assess the relationship between material structure and functional properties, i.e. electrical conductivity and optical transparency. We show that for the doped samples it is possible to achieve low resistivity (of the order of 5×10-4 Ωcm) coupled with transmittance values exceeding 80% in the visible range, showing the potential of polycrystalline Ta:TiO2 for application as a transparent electrode in novel photovoltaic devices. The presence of trends in the structural (crystalline domain size, anatase cell parameters), electrical (resistivity, charge carrier density and mobility) and optical (transmittance, optical band gap, effective mass) properties as a function of the oxygen background pressures and laser fluence used during the deposition process and of the annealing atmosphere is discussed, and points towards a complex defect chemistry ruling the material behavior. The large mobility values obtained in this work for Ta:TiO2 polycrystalline films (up to 13 cm2V-1s-1) could represent a definitive advantage with respect to the more studied Nb-doped TiO2

    Acute acquired immune thrombocytopenia after cardiac surgery: A challenging case

    Get PDF
    Thrombocytopenia is a common condition that recognizes an infinite number of possible causes, especially in specific settings like the one covered in this case report: the postoperative period of cardiac surgery. We report a case of an old male with multiple comorbidities who underwent a coronary angioplasty procedure and aortic valve replacement. He showed severe thrombocytopenia in the postoperative days. Differential diagnosis required a big effort, also for the experts in the field. Our goal was to aggressively treat the patient with prednisolone, platelets, and intravenous immunoglobulins to maximize the prognosis. Our patient developed no complications and was discharged successfully
    corecore