458 research outputs found

    On the spin of gravitational bosons

    Full text link
    We unearth spacetime structure of massive vector bosons, gravitinos, and gravitons. While the curvatures associated with these particles carry a definite spin, the underlying potentials cannot be, and should not be, interpreted as single spin objects. For instance, we predict that a spin measurement in the rest frame of a massive gravitino will yield the result 3/2 with probability one half, and 1/2 with probability one half. The simplest scenario leaves the Riemannian curvature unaltered; thus avoiding conflicts with classical tests of the theory of general relativity. However, the quantum structure acquires additional contributions to the propagators, and it gives rise to additional phases.Comment: Honorable mention, 2002 Gravity Research Foundation Essay

    Spin half fermions with mass dimension one: theory, phenomenology, and dark matter

    Full text link
    We provide the first details on the unexpected theoretical discovery of a spin-one-half matter field with mass dimension one. It is based upon a complete set of dual-helicity eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity, it belongs to a non-standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. We briefly discuss its relevance to the cosmological `horizon problem'. Because the introduced fermionic field is endowed with mass dimension one, it can carry a quartic self-interaction. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate the new fermion as a prime dark matter candidate. Taking this suggestion seriously we study a supernova-like explosion of a galactic-mass dark matter cloud to set limits on the mass of the new particle and present a calculation on relic abundance to constrain the relevant cross-section. The analysis favours light mass (roughly 20 MeV) and relevant cross-section of about 2 pb. Similarities and differences with the WIMP and mirror matter proposals for dark matter are enumerated. In a critique of the theory we bare a hint on non-commutative aspects of spacetime, and energy-momentum space.Comment: 78 pages [Changes: referee-suggested improvements, additional important references, and better readability

    Neutrino mixing schemes and neutrinoless double beta decay

    Get PDF
    We study the possible structure of the neutrino mass matrix taking into consideration the solar and atmospheric neutrinos and the neutrinoless double beta decay. We emphasize on mass matrices with vanishing elements. There are only a very few possibilities remaining at present. We concentrate on three generation scenarios and find that with three parameters there are few possibilities with and without any vanishing elements. For completeness we also present a five parameter four neutrino (with one sterile neutrino) mass matrix which can explain all these experiments and the LSND result.Comment: 12 pages late

    Chalcogen Height Dependence of Magnetism and Fermiology in FeTe_xSe_{1-x}

    Full text link
    FeTexSe1-x (x=0, 0.25, 0.50, 0.75 and 1) system has been studied using density functional theory. Our results show that for FeSe, LDA seems better approximation in terms of magnitude of magnetic energy whereas GGA overestimates it largely. On the other hand for FeTe, GGA is better approximation that gives experimentally observed magnetic state. It has been shown that the height of chalcogen atoms above Fe layers has significant effect on band structure, electronic density of states (DOS) at Fermi level N(EF) and Fermi surfaces. For FeSe the value of N(EF) is small so as to satisfy Stoner criteria for ferromagnetism, (I\timesN(EF)\geq1) whereas for FeTe, since the value of N(EF) is large, the same is close to be satisfied. Force minimization done for FeTexSe1-x using supercell approach shows that in disordered system Se and Te do not share same site and have two distinct z coordinates. This has small effect on magnetic energy but no significant difference in band structure and DOS near EF when calculated using either relaxed or average value of z for chalcogen atoms. Thus substitution of Se at Te site decreases average value of chalcogen height above Fe layers which in turn affect the magnetism and Fermiology in the system. By using coherent-potential approximation for disordered system we found that height of chalcogen atoms above Fe layer rather than chalcogen species or disorder in the anion planes, affect magnetism and shape of Fermi surfaces (FS), thus significantly altering nesting conditions, which govern antiferromagnetic spin fluctuations in the system.Comment: 24 pages Text+Figs: comments/suggestions welcome ([email protected]

    From Hours to Seconds: Towards 100x Faster Quantitative Phase Imaging via Differentiable Microscopy

    Full text link
    With applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the speed of electronic hardware. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form such that more information can be transferred beyond the existing electronic hardware bottleneck. To this end, we present a learnable optical compression-decompression framework that learns content-specific features. The proposed differentiable quantitative phase microscopy (μ\partial \mu) first uses learnable optical feature extractors as image compressors. The intensity representation produced by these networks is then captured by the imaging sensor. Finally, a reconstruction network running on electronic hardware decompresses the QPM images. In numerical experiments, the proposed system achieves compression of ×\times 64 while maintaining the SSIM of 0.90\sim 0.90 and PSNR of 30\sim 30 dB on cells. The results demonstrated by our experiments open up a new pathway for achieving end-to-end optimized (i.e., optics and electronic) compact QPM systems that may provide unprecedented throughput improvements

    Does Quantum Mechanics Clash with the Equivalence Principle - and Does it Matter?

    Get PDF
    With an eye on developing a quantum theory of gravity, many physicists have recently searched for quantum challenges to the equivalence principle of general relativity. However, as historians and philosophers of science are well aware, the principle of equivalence is not so clear. When clarified, we think quantum tests of the equivalence principle won't yield much. The problem is that the clash/not-clash is either already evident or guaranteed not to exist. Nonetheless, this work does help teach us what it means for a theory to be geometric.Comment: 12 page

    Model for Glass Transition in a Binary fluid from a Mode Coupling approach

    Get PDF
    We consider the Mode Coupling Theory (MCT) of Glass transition for a Binary fluid. The Equations of Nonlinear Fluctuating Hydrodynamics are obtained with a proper choice of the slow variables corresponding to the conservation laws. The resulting model equations are solved in the long time limit to locate the dynamic transition. The transition point from our model is considerably higher than predicted in existing MCT models for binary systems. This is in agreement with what is seen in Computer Simulation of binary fluids. fluids.Comment: 9 Pages, 3 Figure

    Solidity of Viscous Liquids

    Full text link
    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Bohmer show that small rotation angles dominate with only few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solid-like on short length scales. A characteristic length, the "solidity length", separates solid-like behavior from liquid-like behavior.Comment: Plain RevTex file, no figure

    Growing Correlation Length on Cooling Below the Onset of Caging in a Simulated Glass-Forming Liquid

    Get PDF
    We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporall correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale of this function has a maximum as a function of time which increases steadily beyond the characteristic length of the static pair correlation function g(r)g(r) in the temperature range approaching the mode coupling temperature from above

    A texture of neutrino mass matrix in view of recent neutrino experimental results

    Get PDF
    In view of recent neutrino experimental results such as SNO, Super-Kamiokande (SK), CHOOZ and neutrinoless double beta decay (ββ0ν)(\beta\beta_{0\nu}), we consider a texture of neutrino mass matrix which contains three parameters in order to explain those neutrino experimental results. We have first fitted parameters in a model independent way with solar and atmospheric neutrino mass squared differences and solar neutrino mixing angle which satisfy LMA solution. The maximal value of atmospheric neutrino mixing angle comes out naturally in the present texture. Most interestingly, fitted parameters of the neutrino mass matrix considered here also marginally satisfy recent limit on effective Majorana neutrino mass obtained from neutrinoless double beta decay experiment. We further demonstrate an explicit model which gives rise to the texture investigated by considering an SU(2)L×U(1)YSU(2)_L\times U(1)_Y gauge group with two extra real scalar singlets and discrete Z2×Z3Z_2\times Z_3 symmetry. Majorana neutrino masses are generated through higher dimensional operators at the scale MM. We have estimated the scales at which singlets get VEV's and M by comparing with the best fitted results obtained in the present work.Comment: Journal Ref.: Phys. Rev. D66, 053004 (2002
    corecore