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Abstract

We study the possible structure of the neutrino mass matrix taking into consideration the solar and atmospheric neutrinos
and the neutrinoless double beta decay. We emphasize on mass matrices with vanishing elements. There are only a very few
possibilities remaining at present. We concentrate on three generation scenarios and find that with three parameters there are
few possibilities with and without any vanishing elements. For completeness we also present a five parameter four neutrino
(with one sterile neutrino) mass matrix which can explain all these experiments and the LSND result.

 2002 Published by Elsevier Science B.V.

In recent past there have been many new results in
neutrino physics [1–6]. All these results are narrow-
ing down the parameter space for the neutrino masses
and mixing. The solution to the atmospheric neutrino
anomaly [1] is the strongest to constrain the mass
squared difference and the mixing angle between the
µ and the τ neutrinos. This result is also supported
by the K2K result [3] and a combined analysis of
both these experiment can now be used to determine
the allowed parameter range [7]. The maximal mixing
angle restricts the structure of the mass matrix very
strongly. Another very strong constrain comes from
the CHOOZ result [4] from the non-observation of os-
cillation of the electron neutrino into any other neutri-
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nos. For the solar neutrinos [2] there are a few possi-
ble solutions, which are also narrowing down [8]. The
small angle solution of the solar neutrinos is almost
ruled out. The situation with the sterile neutrinos is
even worse. It is not considered to be a favoured solu-
tion to the atmospheric neutrinos and also for the solar
neutrinos. However, for the consistency of the LSND
result [5] with both the solar and the atmospheric neu-
trinos we need a sterile neutrino. Thus, although the
present popular scheme is to ignore the LSND result
and work with a three generation neutrino mass ma-
trix, for completeness we shall also mention a four
generation scenario. The three mixing angles of a three
generation mass matrix is determined by the mixing
angles required for the atmospheric neutrinos, solar
neutrinos and the reactor constraint from CHOOZ.

Although the mass squared differences are required
to be fairly small compared to what is required for
the neutrinos to contribute to the dark matter of
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the universe [9], the overall masses of the neutrinos
could be large enough to constitute the hot dark
matter component of the universe, which is required
to explain the large scale structure of the universe.
The recent indication of the positive evidence for a
neutrinoless double beta decay [6] points exactly to
this interesting solution of the neutrino masses [10–
12]. This result has now generated some interest in the
field [13,14]. If we include this result, the mass matrix
for the three generation scenario will have a very little
freedom now.

Among other things, there is now a pattern in the
mass matrix [13,15–17]. Consider a three generation
scenario in the flavour basis, when the charged lepton
mass matrix is diagonal M�− = Diag[me,mµ,mτ ].
In this case the exact maximal mixing for the at-
mospheric neutrinos implies that the four elements
Mν

22,M
ν
33,M

ν
23 and Mν

33 are non-vanishing and con-
strained. It also implies that Mν

12 = Mν
13. The solar

neutrino mixing angle then requires Mν
12 and Mν

13 to
be non-vanishing. Finally Mν

11 gives the contribution
to the neutrinoless double beta decay. This discussion
shows that the neutrino mass matrix is completely de-
termined now and we have very little freedom left.
Moreover all the elements are required to be non-
vanishing. However, since the atmospheric neutrino
mixing could be less than maximal and if all uncer-
tainties in the allowed parameters are considered this
simple argument does not work exactly.

Assuming the symmetric neutrino mass matrix
to be real there are six parameters. All these six
parameters are required to explain the atmospheric
neutrino anomaly, solar neutrino problem, the neu-
trinoless double beta decay and satisfy the CHOOZ
constraint. The explanation of the hot dark matter is
coupled with the neutrinoless double beta decay result,
so this is not considered as an independent constraint.
The question we would now like to ask is, can we have
a neutrino mass scheme satisfying all the present ex-
perimental constraints with less than six parameters?
What is the minimum number of parameters we re-
quire for a neutrino mass matrix, which can satisfy
all these constraints. In particular, can we afford to
have any elements of the neutrino mass matrix to be
vanishing. Exact zero elements in a mass matrix al-
ways makes it convenient for model building, so we
try to find out if there exists any neutrino mass matrix
with zero elements satisfying all these constraints. As

a sequel we present a four generation neutrino mass
matrix, which satisfies all these results including the
LSND result with only five (or even four) parame-
ters.

The various experimental inputs we consider are
the following. The neutrinoless double beta decay
experiment constrain the (11) element of the neutrino
mass matrix (mee) in the flavour basis (in which the
charged lepton mass matrix is diagonal). We define the
mixing matrix Uαi to be the one relating the physical
states |να〉 (in the flavour basis α = e,µ, τ ) to the mass
eigenstates |νi〉 (with masses mi , i = 1,2,3)

|να〉 =
∑

i

Uαi |νi〉.

Then the present evidence of the neutrinoless double
beta decay gives

mee =
∑

i

|Uei |2mi

(1)= (0.05–0.86) eV (at 97% c.l.)

with a best fit mee = 0.39 eV.
The other constraints on the mass eigenvalues are

from the atmospheric and the solar neutrinos and the
LSND:

�m2
atm = {

(1.5–4.8),2.7
}× 10−3 eV2,

�m2
sol-LMA = {

(2–30),4.5
}× 10−5 eV2,

�m2
sol-SMA = {

(4–6),4.7
}× 10−6 eV2,

�m2
LSND > 0.2 eV2.

The last numbers are the best fit values. For solar neu-
trinos the large mixing angle MSW solution (LMA) is
the preferred solution. However, we mention the small
mixing angle MSW solution (SMA) for completeness,
which is almost ruled out at the 2σ level. We shall not
discuss the SMA solutions in detail. The correspond-
ing mixing angles are:

sin2 2θatm = {
(0.87–1),1

}
,

sin2 2θsol-LMA = {
(0.3–0.94),0.82

}
,

sin2 2θsol-SMA = {
(0.001–0.004),0.0015

}
,

sin2 2θLSND = (0.001–0.04).

The LSND result will be used only in the four
generation scenario with a sterile neutrino. In the three
generation case there are three mixing angles. One of
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them is determined by the atmospheric neutrinos, the
second angle is determined by the solar neutrinos. For
the third angle the CHOOZ constraint is considered:

�m2
eX < 10−3 eV2 or sin2 2θeX < 0.2.

We shall not consider any effect of CP violation and
hence the mass matrices are assumed to be real.

For a systematic analysis, we start with the possible
textures for the mass matrices presented in Ref. [15].
We consider all the texture mass matrices, which can
explain the maximal mixing for the atmospheric neu-
trinos and add possible perturbations. Similar to the
maximal mixing in the atmospheric neutrino solution,
the neutrinoless double beta decay imposes the next
strongest constraint on the general structure of the
mass matrices. Since the contribution to the neutrino-
less double beta decay is larger or equal to the mass
squared difference required by the atmospheric neu-
trino anomaly, the Mν

11 must be of the order of any
other large elements in the mass matrix. This rules out
all the textures with the (11) element 0. In a more gen-
eral analysis it is possible to consider a scenario with
vanishing (11) element for the largest entry in the mass
matrix, but for the present purpose of obtaining a sim-
ple texture mass matrix we shall not discuss this pos-
sibility.

This would mean that the hierarchical neutrino
mass schemes are all ruled out [11]. The large angle
solutions to the solar neutrinos are also not allowed
when the first two mass eigenvalues have opposite
signs. As mentioned above, in a more general case it
may be possible to have this texture and still satisfy the
LMA solution, but it is not possible to have any simple
form of the mass matrix. This argument leaves us with
three mass textures

MA1
ν = m0

(1 0 0
0 1/2 1/2
0 1/2 1/2

)
,

MA2
ν = m0

(1 0 0
0 1 0
0 0 1

)
,

(2)MA3
ν = m0

(1 0 0
0 0 1
0 1 0

)
,

which can allow for both LMA as well as the SMA
solutions. There are three other textures, which can

only allow for SMA solutions, they are

MB1
ν = m0

(1 0 0
0 −1/2 −1/2
0 −1/2 −1/2

)
,

MB2
ν = m0

(−1 0 0
0 1 0
0 0 1

)
,

(3)MB3
ν = m0

(1 0 0
0 0 −1
0 −1 0

)
.

m0 is the overall scale in these mass matrices, which
is determined by the value of the neutrinoless double
beta decay. The B solutions are not very interesting,
since they cannot give us LMA solutions.

Let us first study the texture A1. The simplest
perturbation that may be considered is

(4)mA1
1 = m0

(
a b1 b2
b1 0 0
b2 0 0

)
.

In this case it is possible to have solutions with b1 = 0
and b2 = b or b1 = b and b2 = 0, which are ex-
actly equivalent. Different choices for the parameters
a and b can now give the SMA or the LMA solutions.
This three parameter mass matrix with non zero ele-
ment depends on the condition, [mA1

1 ]22 = [mA1
1 ]33 =

[mA1
1 ]23 = [mA1

1 ]32. A few representative sets of the
parameters which allow the LMA and SMA solutions
are:
(1) SMA: m0 = 0.05; a = 0.001;

b = 0.00002;
(2) LMA: m0 = 0.05; a = 0.003;

b = 0.002;
(3) LMA: m0 = 0.05; a = 0.003;

b1 = b2 = 0.001.

We discuss these solutions briefly. These solutions cor-
respond to the partial degenerate case, where two of
the masses are degenerate. In this case it is not possi-
ble to have a neutrinoless double beta decay contribu-
tion more than the mass required for the atmospheric
neutrinos. So, we get an effective mass contributing
to the neutrinoless double beta decay to be 0.05. In
all the cases the mass squared difference between the
states containing the νµ and ντ is around �m2

atm ∼
0.0025 eV, which is required for the atmospheric neu-
trinos. The mixing angle for the atmospheric neutri-
nos is maximal or almost maximal (sin2 2θatm > 0.95).
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In (1), the mass squared difference for solar neutrinos
comes out to be �m2

sol ∼ 5 × 10−6 eV2 with a mix-
ing angle sin2 2θsol ∼ 0.001. In (2), we get �m2

sol ∼
2.5 × 10−5 eV2 with a mixing angle sin2 2θsol ∼ 0.33.
In (3), there are no zero elements, but since b1 = b2,
we get exactly maximal mixing for atmospheric neu-
trinos sin2 2θatm = 1. For the solar neutrinos the solu-
tion is similar to the case (2), �m2

sol ∼ 2.5 ×10−5 eV2

with a mixing angle sin2 2θsol ∼ 0.33.
For the texture A2, it is not possible to have any

elements to be vanishing. The atmospheric neutrino
maximal mixing requires that the (23) and the (32) el-
ements are non-vanishing. For maintaining the max-
imal mixing for atmospheric neutrinos, we also need
the (12) and the (13) elements to be equal. Thus one
of the possible perturbations to the mass matrix A2 is

(5)mA2
1 = m0

(
a b b

b 0 b

b b 0

)
.

The SMA solution is not possible with any simple
form of the perturbations. A representative set for
the LMA solution is: m0 = 0.4 eV, a = 0.0003 and
b = 0.003, which gives �m2

sol ∼ 6.3 × 10−5 eV2

with a mixing angle sin2 2θsol ∼ 0.91 and �m2
atm ∼

0.0028 eV with exactly maximal mixing.
The most interesting case comes out to be the A3

case. All the results may be accommodated with one
parameter perturbation

(6)mA3
1 = m0

(
a 0 a

0 0 0
a 0 −2a

)
.

Now the complete mass matrix mν = MA3
ν +mA3

1 will
also have a few zero elements (mν

22 = mν
12 = mν

21 = 0).
Although the allowed range is not very wide, there
exist solutions, like a = 0.003 with m0 = 0.4 eV. The
predictions are, �m2

sol ∼ 2 × 10−4 eV2 with a mixing
angle sin2 2θsol ∼ 0.33 and �m2

atm ∼ 0.0023 eV with
almost maximal mixing. Similar results come from
two other possible perturbations with this A3 texture

(7)

m0

(
a a a

a 0 0
a 0 −2a

)
and m0

(
a 0 a

0 −a 0
a 0 −a

)
.

With such simple structures it is not possible to have a
wider range of parameters or accommodate the SMA
solution.

For the mass matrix with no vanishing elements, it
is now possible to give a simple parametrization which
guarantees a maximal mixing for the atmospheric
neutrinos and gives the neutrinoless double beta decay

(8)Mν = m0

(
mee a a

a b + c b − c

a b − c b + c

)
.

The neutrinoless double beta decay determines the
element mee. The textures A1, A2 and A3 are the
limiting cases with a, c � b; a � b = c and a � b =
−c, respectively. The CHOOZ constraint is satisfied
and the solar neutrino solutions are obtained with
suitable choice of a and c.

In the case of four generations the analysis becomes
more involved. Only the mass matrices with minimum
number of parameters have been studied in this context
[18,19]. The simplest of these models require four
parameters [18], while other four-generation mass
matrices require five or more parameters with two
identical diagonal elements [19]. We generalise the
simplest of these mass matrices [18] to include the
neutrinoless double beta decay result and in addition
get the correct mixing angle for the solar neutrinos
[18]. In the minimal version of this mass matrix only
maximal mixing was possible for the LMA solution.
We present a mass matrix with only 5 parameters,
which can explain all the experiments including the
neutrinoless double beta decay and the LSND result.

The mass matrix can be written in the basis
[νe, νµ, ντ , νs ] as

(9)M4ν =



m 0 a d

0 c b 0
a b 0 0
d 0 0 −m


 .

We can further economise by identifying two para-
meters m = d , making it effectively a four-parameter
mass matrix.

We discuss the solution briefly. The parameter m

determines the amount of neutrinoless double beta
decay. The oscillation between the states νe and νs

explains the solar neutrino problem. The mixing angle
now becomes, sin2 2θsol = d2/(m2 + d2). A simple
choice of d = m gives sin2 2θsol = 0.5, which is
consistent with present data. Restricting ourselves to
c � b ensures a maximal mixing between νµ and ντ ,
as required by the atmospheric neutrinos. The mass
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squared difference for the atmospheric neutrinos is
given by 2bc and that for the LSND is b2 − d2 − m2.
There are no simple expressions for the mass squared
difference required for the solar neutrinos and the
mixing angle for the LSND result. Numerically these
predictions come out as required. For completeness
we present a representative set of the values of these
parameters (all parameters are in eV), a = 0.03; b =
0.6; c = 0.003; d = m = 0.1; which gives, mee =
0.1 eV,

�m2
sol = 7 × 10−5 eV2, sin2 2θsol = 0.5,

�m2
atm = 0.0027 eV2, sin2 2θatm = 1,

�m2
LSND = 0.34 eV2,p sin2 2θLSND = 0.003.

This appears to be the simplest four-generation mass
matrix with texture zeroes, which can explain all
experiments in neutrino physics.

We have not mentioned about the LOW, Just-so
and Vacuum oscillation solutions of the solar neutrino
problem. It has been shown in Ref. [12] that in a
general analysis these solutions are ruled out when
the radiative corrections are considered in conjunction
with the present result on the neutrinoless double beta
decay. However, in a more detailed analysis [13] it has
been pointed out that the LOW solution is allowed in
some special cases. But from the point of constructing
a simple form of the texture mass matrix we could
not find any solution, which allows these solutions. In
the four generation case the mass matrix we presented
can allow for a vacuum solution for some choice of
parameters, similar to the earlier analysis of Ref. [18].

In summary, we try to obtain the simplest forms of
the mass matrices consistent with all the present ex-
periments including the neutrinoless double beta de-
cay. We present possible mass matrices with vanish-
ing elements. We also present a simple form of the
mass matrix with four parameters, which can repro-
duce all possible allowed mass matrices. We further
present a four generation mass matrix with five para-
meters, which can explain all the experiments.
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