We present a calculation of a fourth-order, time-dependent density
correlation function that measures higher-order spatiotemporall correlations of
the density of a liquid. From molecular dynamics simulations of a glass-forming
Lennard-Jones liquid, we find that the characteristic length scale of this
function has a maximum as a function of time which increases steadily beyond
the characteristic length of the static pair correlation function g(r) in the
temperature range approaching the mode coupling temperature from above