26 research outputs found

    Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3_3

    Get PDF
    Acceptor and donor doping is a standard for tailoring semiconductors. More recently, doping was adapted to optimize the behavior at ferroelectric domain walls. In contrast to more than a century of research on semiconductors, the impact of chemical substitutions on the local electronic response at domain walls is largely unexplored. Here, the hexagonal manganite ErMnO3_3 is donor doped with Ti4+^{4+}. Density functional theory calculations show that Ti4+^{4+} goes to the B-site, replacing Mn3+^{3+}. Scanning probe microscopy measurements confirm the robustness of the ferroelectric domain template. The electronic transport at both macro- and nanoscopic length scales is characterized. The measurements demonstrate the intrinsic nature of emergent domain wall currents and point towards Poole-Frenkel conductance as the dominant transport mechanism. Aside from the new insight into the electronic properties of hexagonal manganites, B-site doping adds an additional degree of freedom for tuning the domain wall functionality

    Antiferromagnetic metal phase in an electron-doped rare-earth nickelate

    Full text link
    Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric spin structures. The rare earth nickelate NdNiO3 is known to be a noncollinear antiferromagnet where the onset of antiferromagnetic ordering is concomitant with a transition to an insulating state. Here, we find that for low electron doping, the magnetic order on the nickel site is preserved while electronically a new metallic phase is induced. We show that this metallic phase has a Fermi surface that is mostly gapped by an electronic reconstruction driven by the bond disproportionation. Furthermore, we demonstrate the ability to write to and read from the spin structure via a large zero-field planar Hall effect. Our results expand the already rich phase diagram of the rare-earth nickelates and may enable spintronics applications in this family of correlated oxides.Comment: 25 pages, 4 figure

    EpCAM<sup>high</sup> and EpCAM<sup>low</sup> circulating tumor cells in metastatic prostate and breast cancer patients.

    Get PDF
    The presence of high expressing epithelial cell adhesion molecule (EpCAMhigh) circulating tumor cells (CTC) enumerated by CellSearch® in blood of cancer patients is strongly associated with poor prognosis. This raises the question about the presence and relation with clinical outcome of low EpCAM expressing CTC (EpCAMlow CTC). In the EU-FP7 CTC-Trap program, we investigated the presence of EpCAMhigh and EpCAMlow CTC using CellSearch, followed by microfiltration of the EpCAMhigh CTC depleted blood. Blood samples of 108 castration-resistant prostate cancer patients and 22 metastatic breast cancer patients were processed at six participating sites, using protocols and tools developed in the CTC-Trap program. Of the prostate cancer patients, 53% had ≥5 EpCAMhigh CTC and 28% had ≥5 EpCAMlow CTC. For breast cancer patients, 32% had ≥5 EpCAMhigh CTC and 36% had ≥5 EpCAMlow CTC. 70% of prostate cancer patients and 64% of breast cancer patients had in total ≥5 EpCAMhigh and/or EpCAMlow CTC, increasing the number of patients in whom CTC are detected. Castration-resistant prostate cancer patients with ≥5 EpCAMhigh CTC had shorter overall survival versus those with high CTC (p = 0.000). However, presence of EpCAMlow CTC had no relation with overall survival. This emphasizes the importance to demonstrate the relation with clinical outcome when presence of CTC identified with different technologies are reported, as different CTC subpopulations can have different relations with clinical outcome

    Die Zentralabteilung Strahlenschutz der Kernforschungsanlage Jülich

    No full text
    Die Kernforschungsanlage Jülich des Landes NordrheinWestfalen stellt durch zahlreiche Forschungsinstitute der verschiedenstenFachrichtungen, mehrere Reaktoren und weitere kerntechnische Anlagen vielseitige und interessante Aufgaben auf dem Gebiet des Strahlenschutzes. Zur Bearbeitung dieser Strahlenschutzaufgaben ist das Zusammenwirken einer Reihe von Fachgebieten wie Physik, Chemie, Meteorologie, Strahlungsmeßtechnik, Elektronik, Biologie und Medizin erforderlich. Darüber hinaus ergeben sich aus den einschlägigen Gesetzen und Verordnungen betriebliche und administrative Aufgaben. Darum wurde für die Kernforschungsanlage eine zentrale Abteilung für den gesamten Strahlenschutz geschaffen. So wird eine gleichmäßige und wirkungsvolle Behandlung der Strahlenschutzprobleme innerhalb der Gesamtanlage erreicht. Der Strahlenschutz dient in erster Linie der Gesunderhaltung der Beschäftigten und der Bevölkerung außerhalb der Anlage. Um diesem Personenkreis ein Höchstmaß an Sicherheit zu bieten, wird der Strahlenschutz mit den exaktesten wissenschaftlichen Methoden und den modernsten technischen Hilfsmitteln durchgeführt. Die folgenden Ausführungen mögen einen überblick über Organisation und Tätigkeit der Zentralabteilung Strahlenschutz in Jülich vermitteln
    corecore