3,285 research outputs found

    HAPMAP: a computer program for the linkage analysis of haploids.

    Get PDF
    The development of technology for the detection of variations in DNA sequence is permitting the rapid mapping of the genomes of many organisms

    Influence of realistic parameters on state-of-the-art LWFA experiments

    Full text link
    We examine the influence of non-ideal plasma-density and non-Gaussian transverse laser-intensity profiles in the laser wakefield accelerator analytically and numerically. We find that the characteristic amplitude and scale length of longitudinal density fluctuations impacts on the final energies achieved by electron bunches. Conditions that minimize the role of the longitudinal plasma density fluctuations are found. The influence of higher order Laguerre-Gaussian laser pulses is also investigated. We find that higher order laser modes typically lead to lower energy gains. Certain combinations of higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and Controlled Fusio

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter

    Cooperative kernels: GPU multitasking for blocking algorithms

    Get PDF
    There is growing interest in accelerating irregular data-parallel algorithms on GPUs. These algorithms are typically blocking , so they require fair scheduling. But GPU programming models (e.g. OpenCL) do not mandate fair scheduling, and GPU schedulers are unfair in practice. Current approaches avoid this issue by exploit- ing scheduling quirks of today’s GPUs in a manner that does not allow the GPU to be shared with other workloads (such as graphics rendering tasks). We propose cooperative kernels , an extension to the traditional GPU programming model geared towards writing blocking algorithms. Workgroups of a cooperative kernel are fairly scheduled, and multitasking is supported via a small set of language extensions through which the kernel and scheduler cooperate. We describe a prototype implementation of a cooperative kernel frame- work implemented in OpenCL 2.0 and evaluate our approach by porting a set of blocking GPU applications to cooperative kernels and examining their performance under multitasking

    Spanning Trees on Graphs and Lattices in d Dimensions

    Full text link
    The problem of enumerating spanning trees on graphs and lattices is considered. We obtain bounds on the number of spanning trees NSTN_{ST} and establish inequalities relating the numbers of spanning trees of different graphs or lattices. A general formulation is presented for the enumeration of spanning trees on lattices in d2d\geq 2 dimensions, and is applied to the hypercubic, body-centered cubic, face-centered cubic, and specific planar lattices including the kagom\'e, diced, 4-8-8 (bathroom-tile), Union Jack, and 3-12-12 lattices. This leads to closed-form expressions for NSTN_{ST} for these lattices of finite sizes. We prove a theorem concerning the classes of graphs and lattices L{\cal L} with the property that NSTexp(nzL)N_{ST} \sim \exp(nz_{\cal L}) as the number of vertices nn \to \infty, where zLz_{\cal L} is a finite nonzero constant. This includes the bulk limit of lattices in any spatial dimension, and also sections of lattices whose lengths in some dimensions go to infinity while others are finite. We evaluate zLz_{\cal L} exactly for the lattices we considered, and discuss the dependence of zLz_{\cal L} on d and the lattice coordination number. We also establish a relation connecting zLz_{\cal L} to the free energy of the critical Ising model for planar lattices L{\cal L}.Comment: 28 pages, latex, 1 postscript figure, J. Phys. A, in pres

    Spanning trees on the Sierpinski gasket

    Full text link
    We obtain the numbers of spanning trees on the Sierpinski gasket SGd(n)SG_d(n) with dimension dd equal to two, three and four. The general expression for the number of spanning trees on SGd(n)SG_d(n) with arbitrary dd is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4b=3,4 are also obtained.Comment: 20 pages, 8 figures, 1 tabl

    Two-frequency shell model for hypernuclei and meson-exchange hyperon-nucleon potentials

    Get PDF
    A two-frequency shell model is proposed for investigating the structure of hypernuclei starting with a hyperon-nucleon potential in free space. In a calculation using the folded-diagram method for Λ¹⁶O, the Λ single particle energy is found to have a saturation minimum at an oscillator frequency ħωΛ≈10MeV, for the Λ orbit, which is considerably smaller than ħωN=14MeV for the nucleon orbit. The spin-dependence parameters derived from the Nijmegen NSC89 and NSC97f potentials are similar, but both are rather different from those obtained with the Jülich-B potential. The ΛNN three-body interactions induced by ΛN-ΣN transitions are important for the spin parameters, but relatively unimportant for the low-lying states of Λ¹⁶O.Yiharn Tzeng, S. Y. Tsay Tzeng, T. T. S. Kuo, T.-S.H. Lee, and V. G. D. Stok

    Pumping Speed Measurement and Analysis for the Turbo Booster Pump

    Full text link
    This study applies testing apparatus and a computational approach to examine a newly designed spiral-grooved turbo booster pump (TBP), which has both volume type and momentum transfer type vacuum pump functions, and is capable of operating at optimum discharge under pressures from approximately 1000 Pa to a high vacuum. Transitional flow pumping speed is increased by a well-designed connecting element. Pumping performance is predicted and examined via two computational approaches, namely the computational fluid dynamics (CFD) method and the direct simulation Monte Carlo (DSMC) method. In CFD analysis, comparisons of measured and calculated inlet pressure in the slip and continuum flow demonstrate the accuracy of the calculation. Meanwhile, in transition flow, the continuum model of CFD is unsuitable for calculating such rarefied gas. The pumping characteristics for a full 3D model on a rotating frame in transition and molecular regimes thus are simulated using the DSMC method and then confirmed experimentally. However, when the Knudsen number is in the range 0.5 < Kn < 0.1, neither CFD computation nor DSMC simulation is suitable for analyzing the pumping speed of the turbo booster pump. In this situation, the experimental approach is the most appropriate and effective method for analyzing pumping speed. Moreover, the developed pump is tested using assessment systems constructed according to ISO and JVIS-005 standards, respectively. Comparisons are also made with other turbo pumps. The compared results show that the turbo booster pump presented here has good foreline performance
    corecore