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1Department of Physics, SUNY-Stony Brook

Stony Brook, New York 11794 USA

2 Departamento de F́ısica, Facultad de Ciencias Exactas

Universidad Nacional de La Plata, C. C. 67, 1900 La Plata, Argentina

3 Institute of Physics, Academia Sinica

Nankang, Taipei, Taiwan

(March 11, 1997)

Abstract

We present a microscopic study of halo nuclei, starting from the Paris and

Bonn potentials and employing a two-frequency shell model approach. It is

found that the core-polarization effect is dramatically suppressed in such nu-

clei. Consequently the effective interaction for halo nucleons is almost entirely

given by the bare G-matrix alone, which presently can be evaluated with a

high degree of accuracy. The experimental pairing energies between the two

halo neutrons in 6He and 11Li nuclei are satisfactorily reproduced by our cal-

culation. It is suggested that the fundamental nucleon-nucleon interaction can

be probed in a clearer and more direct way in halo nuclei than in ordinary

nuclei.
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Radioactive-beam nuclear physics has been progressing rapidly, and there is much current

interest in studying halo nuclei [1,2]. There were four articles about halo nuclei in a recent

issue of Physical Review C: Nazarewicz et al. [3] dealt with the halo nuclei around the nucleus

48Ni, Hamamoto et al. [4] carried out a systematic investigation of the single particle and

collective degrees of freedom in the drip-line nuclei, and an experimental study of heavy halo

nuclei around N = 82 was also presented [5]. It is remarkable that nuclei as exotic as 48Ni,

i.e., the mirror image of the double closed-shell nucleus 48Ca, are now being studied!

The halo nuclei (or drip-line nuclei) may well play a central role in our understanding

of the nuclear binding. Their typical structure is that of a tightly bound inner core with

a few outer nucleons that are loosely attached to the core. Although these exotic nuclei

are bound, their binary subsystems are not. For instance, the halo nucleus 6He (11Li) is

presumably made of a 4He (9Li) core surrounded by a two-neutron halo. As a whole 6He

(11Li) is bound, but its binary subsystems, i.e., 5He (10Li) and the di-neutron are unbound.

The pairing force between the valence nucleons is thus essential for the stability of the halo

nuclei, and it is important to calculate it as accurately as we can.

So far, the halo nuclei have been calculated using empirical effective interactions, tuned

to stable nuclei. The inherent density dependence of Skyrme-type forces [3,4] provides a

reasonable means of extrapolating to the lower density regimes characteristic of nuclei far

from stability. Yet, quite recently Kuo et al. [6] have suggested to study the drip-line nuclei

from the first principles, i.e., from the elementary nucleon-nucleon (NN) force, such as the

Paris [7] and Bonn [8] interactions. Halo nucleons are separated rather far from the other

nucleons in the ”core nucleus”, and the interaction among them should be derivable from

the free NN interaction with small medium corrections.

Starting from a free NN interaction, a model-space effective interaction (Veff) among the

nucleons in the nuclear medium can be derived, using a G-matrix folded-diagram approach

[9,10]. The major difficulty in such a microscopic effective interaction theory has been

the treatment of the core polarization effect (CPE), in particular the higher-order core

polarization diagrams. In ordinary nuclei, the valence nucleons are close to the nuclear
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core, an example being the two sd-shell neutrons of 18O residing adjacently to the 16O

core. Consequently, there is a strong valence-core coupling and therefore a large CPE.

It is a formidable task to figure out in such a situation which G-matrix diagrams should

be embodied in the Q̂-box. The two leading terms are the well-known first-order G-matrix

diagram and the second-order core polarization diagram G3p1h [11]. Hjorth-Jensen et al. [12]

have investigated the third-order Q̂-box diagrams for the sd shell. They concluded that,

after folding, the net effect on Veff was a change of about 10− 15%, as compared with the

case when only the first- and second- order ones were considered. Higher and higher-order

core polarization diagrams rapidly become prohibitively more difficult to deal with. Thus

in practice one can only include some low-order diagrams for the calculation of the Q̂-box.

Besides, when there are disagreements between theory and experiment, one is not sure if

they are due to the NN interaction or to the approximation adopted in solving the many-

body problems (such as the neglecting of the higher-order core polarization diagrams). The

environment in the halo nucleons is different and may be more promising, because they are

located quite far away from the core. A schematic comparison between normal and halo

nuclei is given in Fig. 1. A relatively weak CPE is expected for halo nucleons, and therefore

an Veff predominately governed by the free NN interaction. That is, Veff should be in essence

the bare G-matrix, which presently can be calculated to a high degree of accuracy. Hence the

halo nuclei, besides having excitingly interesting and exotic properties, may furnish as well

a much better testing ground for the fundamental NN interactions, than ordinary nuclei.

Motivated by the above scenario, we present in this letter a microscopic derivation of the

Veff for halo nucleons in 6He and 11Li, starting from the Paris and Bonn NN potentials and

using a G-matrix folded-diagram approach [9,10]. The main steps in such a derivation are:

i) Choice of the model space P . An important criterion for selecting the model space

P is that its overlap, with the physical states under consideration, should be as large as

possible. For instance, the 4He, i.e., the 6He core, should remain essentially as an ordinary

α-particle, with little perturbation from the distant halo nucleons. For the P space we shall

use a closed (0s1/2)
4 core (α-particle) with the valence (halo) nucleons confined in the 0p
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shell. Yet the halo nucleons have a much larger r.m.s. radius than the core, and therefore

an oscillator constant h̄ω considerable smaller than that given by the empirical formula

h̄ω = 45A−1/3 − 25A−2/3 MeV (valid for ordinary nuclei). It would not be then feasible to

reproduce both radii, using shell model wave functions with a common h̄ω. One may get past

this difficulty by including several major shells in the one-frequency shell model (OFSM)

calculation. But this would be very tedious. A convenient and physically appealing solution

to this problem is to employ a two-frequency shell model (TFSM) for the description of halo

nuclei, as suggested in Ref. [6]. Within the TFSM one uses oscillator wave functions with

h̄ωin and h̄ωout for the core (inner) and the halo (outer) orbits, respectively. The notations

bin and bout also will be used from now on, with b2 ≡ h̄/mω. In the present work bin is

fixed at 1.45 fm, while bout is treated as a variation parameter (or generator coordinate). To

assure the orthonormality, we have actually used bin for all the ` = 0 waves (0s1/2, 1s1/2, · · ·)

and bout for waves with other ` values.

ii) Evaluation of the model-space G-matrix. For ordinary nuclei, the G-matrix can be

calculated rather accurately with the method developed in Refs. [13,14]. We extend below

this method to the halo nucleons in the context of the TFSM. For a general model-space P ,

we define the corresponding Brueckner G-matrix by the integral equation [14,15]

G(ω) = V + V Q2
1

ω −Q2TQ2
Q2G(ω),

where ω is an energy variable, Q2 is a two-body Pauli exclusion operator, and T is the two-

nucleon kinetic energy. Note that our G-matrix has orthogonalized plane-wave intermediate

states. The exact solution of this G-matrix is G = GF + ∆G [13,14], where GF is the free

G-matrix, and ∆G is the Pauli correction term

∆G(ω) = −GF (ω)
1

e
P2

1

P2[
1
e

+ 1
e
GF (ω)1

e
]P2

P2
1

e
GF (ω),

with e ≡ ω − T . The projection operator P2, defined as (1 − Q2), will be discussed later.

The basic ingredient for calculating the above G-matrix is the matrix elements of GF within

the P2 space. This space contains all the two-particle states that must be excluded from
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the intermediate states in G-matrix calculations. For ordinary nuclei, where the OFSM

is used, the states excluded by the Pauli operator and those contained within the model

space have a common length parameter b. For halo nuclei, where we use the TFSM, the

situation is more complicated, as the wave functions for the excluded states and those

within the model space have in general different length parameters bin and bout. Hence

to calculate ∆G, we need the matrix elements of GF in a bin − bout mixed representation.

This poses a technical difficulty because the transformations, from the c.m. coordinates to

the laboratory coordinates for two-particle states with different oscillator lengths, are not

as easy to perform as for one common oscillator length. We have adopted an expansion

procedure to surmount this difficulty. Namely, we expand the oscillator wave functions with

bin in terms of those with bout, or vice versa. When bin and bout are not too different from

each other, this procedure is relatively effortless to carry out. Usually a high accuracy can

be attained by including about 8 terms in the expansion. Still, the calculation of the two-

frequency G-matrix is significantly more complicated than the ordinary one-frequency one.

Another difficulty, in deriving the G-matrix for halo nuclei, is the treatment of its Pauli

exclusion operator. As the halo nucleons are rather far from the core nucleons, the effect of

Pauli blocking is expected to be small. But, to get a reliable result for a small effect, a very

accurate procedure has to be employed. We write the projection operator Q2 as

Q2 =
∑
all ab

Q(ab)|ab〉〈ab|,

where Q(ab) = 0, if b ≤ n1, a ≤ n3, or b ≤ n2, a ≤ n2, or b ≤ n3, a ≤ n1, and Q(ab) = 1

otherwise. The boundary ofQ(ab) is specified by the orbital numbers (n1, n2, n3). We denote

the shell model orbits by numerals, starting from the bottom of the oscillator well: 1 for

orbit 0s1/2, 2 for 0p3/2, · · · , 7 for 0f7/2, and so on. n1 and n2 stand for the highest orbits of

the closed core (Fermi sea) and of the chosen model space, respectively. For example, we

consider 4He as a closed core and all 6 orbits in the sp and sd shells are included in the model

space. Then n1 = 1 and n2 = 6. As for the G-matrix intermediate states we consider only

particle states (i.e., states above the Fermi sea), n3 in principle should be ∞ [14]. Still, in
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practice this is not feasible, and n3 has to be determined by an empirical procedure. Namely,

we perform calculations with increasing values for n3 until numerical results become stable.

In Table 1, we display some representative results of our two-frequency G-matrix for the

{0s0p} model space, with bin = 1.45 fm and bout = 2.0 fm. The only approximation here

is the finite n3 truncation. A satisfactory n3 convergence is attained for n3 = 21, and this

value is used here. It is worth noting that, although the halo nucleons are widely separated

from the closed core, the Pauli correction term ∆G (= G−GF ) is still quite significant.

iii) Calculation of the irreducible diagrams for the vertex function Q̂-boxes. Once derived

the G-matrix, we can calculate the irreducible vertex function Q̂-box. Finally, the model-

space energy-independent Veff is evaluated in terms of the Q̂-box folded-diagram series [9,10],

following closely the procedures of Ref. [11].

Diagonal matrix elements of G, G3p1h and Veff , for the states |(p3/2)
2;T = 1, J = 0〉 and

|(p1/2)
2;T = 1, J = 0〉, are shown in Fig. 2 as a function of bout, for both the Paris and

Bonn-A potentials. As we increase bout, we are augmenting the average distance between

the halo nucleons and the core and so reducing the coupling between them. For sufficiently

large bout, the total CPE must be small and it should be sufficiently accurately given by the

second-order (lowest order) core polarization diagram alone. In fact, as bout increases, the

core polarization diagrams G3p1h approach rapidly and monotonically to zero and become

negligibly small at bout ∼= 2.25 fm. In our TFSM approach, we have assumed a fixed 4He

or 9Li core, always described by bin = 1.45 fm. Therefore the energy denominator for the

diagram G3p1h is fixed by the corresponding core and does not change with bout. This means

that the suppression of G3p1h is entirely due to the weakening of the core-valence particle

interaction. The behavior of the bare G-matrix and Veff shown in Fig. 2 are also of interest.

First, they are quite similar to each other. Second, while for the p3/2 case, they become

weaker as bout increases, in the p1/2 case they become stronger as bout increases. Third, at

large bout the results given by the Paris and Bonn A potentials are practically identical. This

is because their long-range parts do not differ much from each other.

To assess to which extent the nuclear model formulated above is reliably it is necessary
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to compare our results with experiments. The valence or pairing interaction energy between

the halo nucleons in 6He is obtained from the odd-even mass difference [16]

Eexp
p (6He) = −[B(6He) + B(4He)− 2B(5He)]=−2.77 MeV.

To calculate this energy, we need to diagonalize the folded-diagram Veff [11] in a p3/2 and

p1/2 model space (T = 1, J = 0). In this way we get Eth
p = −2.97 MeV at bout = 2.25 fm

for the Paris potential. As the CPE is strongly suppressed for such a bout value, this result

almost entirely comes from the bare G-matrix. The ground-state wave function of 6He is

almost pure (p3/2)
2, with very little (p1/2)

2 admixture. Thus our Eth
p is also close to the

diagonal G-matrix element shown in Fig. 2. As we have used a p3/2− p1/2 model space, our

wave function for 11Li has only one component (neutron orbits closed). Then the diagonal

(p1/2)
2(T = 1, J = 0) matrix element of Veff , which is quite close to the unfolded value of

Fig. 2 at bout = 2.25 fm, is directly comparable to the pairing energy for 11Li. From the

masses of 11Li, 10Li and 9Li [16], we get Eexp
p = −1.14 MeV, while our result is Eth

p = −0.81

MeV at bout = 2.25 fm for the Paris potential. This discrepancy could be pointing out

that some physics is still missing in our description of the valence 11Li neutrons. It is very

likely that they should not be entirely confined to the p shell, but a larger space, such as

{0p1/20d1s}, is probable needed.

In passing, we mention that the above bout = 2.25 fm is a reasonable choice. Recall that

we have fixed bin = 1.45 fm. With these values of bin and bout, and assuming a pure s4pn

wave function, we get that Rth(6He) = 2.51 fm, in good agreement with the empirical value

Rexp(6He) = 2.57 ± 0.1 fm [17]; similarly, Rth(11Li) = 3.03 fm while Rexp(11Li) = 3.1 ± 0.1

fm [17].

We have also calculated the valence interaction energy for 6Li using a similar folded-

diagram procedure in the p3/2 − p1/2 space. From the empirical masses of 6Li, 5Li, 5He and

4He [16], we obtain Eexp
v = −6.56 MeV. (This number was incorrectly given as −3.55 MeV

in Ref. [6].) Our result is Eth
v = −6.64 MeV for the Paris potential, if we use bout = 1.75

and bin = 1.45 fm. It is of interest to stress that 6Li is not a halo nucleus, according to
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our calculation, in the sense that there is no need to employ a very large bout for its valence

nucleons.

In summary, we have derived the effective interaction for the valence nucleons in halo

nuclei, starting from realistic NN interactions. Our preliminary results are encouraging. We

have employed a two-frequency shell model approach, to give a good spatial description for

both the core nucleons and the halo nucleons. While keeping the inner length parameter

bin fixed, we gauge the spatial extension of the halo nucleons by varying the outer length

parameter bout. In this way we have explicitly proved that the core polarization effect is

strongly suppressed at large bout values, as required by the large empirical r.m.s. radii of

halo nuclei. Ergo, the effective interaction between the halo nucleons is predominantly given

by the bare G-matrix alone, in accord with our expectations. The Pauli blocking effect on

the G-matrix has been found to be very important, and it can be calculated quite accurately

as we have demonstrated. Thus it appears that one can derive the effective interaction for

halo nuclei much more accurately than for ordinary nuclei. We enthusiastically believe that

the halo nuclei, which have already greatly enhanced our knowledge about nuclei, may in

addition provide a more accurate testing ground for the fundamental NN interaction, than

the ordinary nuclei.
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TABLES

TABLE I. Dependence of the two-frequency G-matrix on the choice of n3. Listed are the

matrix element 〈(0p3/2)
2;TJ |G(ω)|(0p3/2)2;TJ〉 (in MeV), calculated for the Paris potential and

three different values of ω (in MeV), with TJ = 01 (upper panel) and with TJ = 10 (lower panel).

We have used bin = 1.45 and bout = 2.0 fm for the length parameters, and n1 = 1 and n2 = 6 for

the exclusion operator. The first row in each group (F) denotes the free G-matrix.

n3 ω = −5 ω = −10 ω = −20

F −6.896 −4.530 −3.155

6 −2.218 −2.115 −1.885

15 −2.217 −2.114 −1.882

21 −2.217 −2.114 −1.882

F −4.422 −3.933 −3.480

6 −2.768 −2.748 −2.701

15 −2.761 −2.744 −2.698

21 −2.761 −2.744 −2.698

Figure Captions

Fig. 1 Comparison of core polarization in ordinary and halo nuclei.

Fig. 2 Diagonal matrix elements of G3p1h (dotted lines), G (dashed lines) and Veff (full

lines) for the states |(p3/2)
2;T = 1, J = 0〉 (upper panel) and |(p1/2)

2;T = 1, J = 0〉 (lower

panel) as a function of bout; calculations done with Paris and Bonn-A potentials are shown

by open and solid symbols, respectively. The G-matrix curves are for ω = −5 MeV and

Pauli exclusion operator with (n1, n2, n3) = (1, 3, 21).
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