58 research outputs found

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    GnRH-gemcitabine conjugates for the treatment of androgen-independent prostate cancer : pharmacokinetic enhancements combined with targeted drug delivery

    Get PDF
    Gemcitabine, a drug with established efficacy against a number of solid tumors, has therapeutic limitations due to its rapid metabolic inactivation. The aim of this study was the development of an innovative strategy to produce a metabolically stable analogue of gemcitabine that could also be selectively delivered to prostate cancer (CaP) cells based on cell surface expression of the Gonadotropin Releasing Hormone- Receptor (GnRH-R). The synthesis and evaluation of conjugated molecules, consisting of gemcitabine linked to a GnRH agonist, is presented along with results in androgen-independent prostate cancer models. NMR and ligand binding assays were employed to verify conservation of microenvironments responsible for binding of novel GnRH-gemcitabine conjugates to the GnRH-R. In vitro cytotoxicity, cellular uptake and metabolite formation of the conjugates were examined in CaP cell lines. Selected conjugates were efficacious in the in vitro assays with one of them, namely GSG, displaying high antiproliferative activity in CaP cell lines along with significant metabolic and pharmacokinetic advantages in comparison to gemcitabine. Finally, treatment of GnRH-R positive xenografted mice with GSG, showed a significant advantage in tumor growth inhibition when compared to gemcitabine.A.G.Leventis foundation and the General Secretariat for Research & Technology of the Greek Ministry of Education (LS7- 1682/17156/6.12.10).MRC and National Research Foundation of South Africa, and the Universities of Pretoria and Cape Townhttp://pubs.acs.org/bc2015-02-28hb201

    DIA-DB : a database and web server for the prediction of diabetes drugs

    Get PDF
    The DIA-DB is a web server for the prediction of diabetes drugs that uses two different and complementary approaches: (a) comparison by shape similarity against a curated database of approved antidiabetic drugs and experimental small molecules and (b) inverse virtual screening of the input molecules chosen by the users against a set of therapeutic protein targets identified as key elements in diabetes. As a proof of concept DIA-DB was successfully applied in an integral workflow for the identification of the antidiabetic chemical profile in a complex crude plant extract. To this end, we conducted the extraction and LC-MS based chemical profile analysis of Sclerocarya birrea and subsequently utilized this data as input for our server. The server is open to all users, registration is not necessary, and a detailed report with the results of the prediction is sent to the user by email once calculations are completed. This is a novel public domain database and web server specific for diabetes drugs and can be accessed online through http://bio-hpc.eu/software/dia-db/.http://pubs.acs.org/journal/jcics1/about.htmlhj2021BiochemistryGeneticsMicrobiology and Plant Patholog

    On the design principles of peptide–drug conjugates for targeted drug delivery to the malignant tumor site

    No full text
    Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide–drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them

    Rational Drug Design and Synthesis of Molecules Targeting the Angiotensin II Type 1 and Type 2 Receptors

    No full text
    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases

    Pharmaceutical compositions for antihypertensive treatments: a patent review

    No full text
    Introduction: New drug formulations against hypertension have a vital role in the quality of human life, as this risk factor for cardiovascular disease can be life threatening. A modern life style characterized by less exercise, smoking, drinking and poor diet has increased the risk of developing hypertension, the so-called silent killer, in civilized communities and thus an urgent defense is needed against this enemy. Areas covered: In this review, the authors provide extensive information on pharmaceutical formulations containing anti-hypertensive drugs, as well as on general and specific patents. Thus, readers can understand the advances and new trends in the field. Expert opinion: A considerable effort has been made to provide new and improved formulations, comprising anti-hypertensive drugs with new excipients, appropriate particle size, containing alkaline salts or included in cyclodextrins in an attempt to avoid known existing problems. New types of formulations are expected to emerge in the near future that will allow for more effective and spatiotemporally controlled drug delivery, which will be better tolerated by the patients and will provide better pharmaceutical treatment. Such an example is the new cocktail formulations that contain more than one active component, act synergistically and therefore have optimized pharmacological benefits. Formulations using multitarget antihypertensive drugs are also expected to be commercially available in the near future

    Preorganized composite material of polyaniline–palladium nanoparticles with high electrocatalytic activity to methanol and ethanol oxidation

    No full text
    We report a simple method for the preparation of a stabilized palladium nanoparticle-polyaniline composite by mixing aniline and PdCl42− in aqueous acidic solutions. Pd nanoparticles (Pd NP) were produced by subsequent reduction of the pre-organized material with different concentrations of NaBH4. Under optimum conditions (0.1 M NaBH4 in ethanol for 1 h at 0 °C), Pd NP with a size of 5–10 nm were obtained, as revealed by transmission electron microscopy. The so-formed pre-organized material was also characterized with scanning electron microscopy, X-ray diffraction, infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, nuclear magnetic resonance spectroscopy, and cyclic voltammetry. The developed catalyst exhibited a large electrochemically active surface area (25.2 m2 g−1 catalyst) and remarkable mass activities for the electro-oxidation of methanol (602 A g−1 Pd) and ethanol (433 A g−1 Pd) in alkaline media. The excellent electrocatalytic performance of the developed polyaniline-Pd NP composite material renders it as a promising anode catalyst in alkaline fuel cells. [Display omitted] •Simple electroless approach for the synthesis of Pd NP incorporated in polyaniline.•The preorganization of the material allows for spatial distribution of Pd NP.•The nanocomposite demonstrated high electrocatalytic activity for alcohol oxidation

    A Journey to the Conformational Analysis of T-Cell Epitope Peptides Involved in Multiple Sclerosis

    No full text
    Multiple sclerosis (MS) is a serious central nervous system (CNS) disease responsible for disability problems and deterioration of the quality of life. Several approaches have been applied to medications entering the market to treat this disease. However, no effective therapy currently exists, and the available drugs simply ameliorate the destructive disability effects of the disease. In this review article, we report on the efforts that have been conducted towards establishing the conformational properties of wild-type myelin basic protein (MBP), myelin proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG) epitopes or altered peptide ligands (ALPs). These efforts have led to the aim of discovering some non-peptide mimetics possessing considerable activity against the disease. These efforts have contributed also to unveiling the molecular basis of the molecular interactions implicated in the trimolecular complex, T-cell receptor (TCR)-peptide-major histocompatibility complex (MHC) or human leucocyte antigen (HLA)
    corecore