6 research outputs found

    Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin

    Get PDF
    In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8–14 nm in diameter and 80–100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter), oval (~300 nm in diameter) and nanorod (200–400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles

    A 3D Model of the Membrane Protein Complex Formed by the White Spot Syndrome Virus Structural Proteins

    Get PDF
    Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus), is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process.In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument) proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers.From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented

    Improving Electrochemical Activity in a Semi-V-I Redox Flow Battery by Using a C–TiO2–Pd Composite Electrode

    No full text
    This study developed composite electrodes used in a semi-vanadium/iodine redox flow battery (semi-V-I RFB) system and designed semi-V-I RFB stacks to provide performance comparable to that of an all-vanadium redox flow battery (all-VRFB) system. These electrodes were modified using the electroless plating method and sol-gel process. The basic characteristics of the composited electrodes, such as the surface structural morphology, metal crystal phases, and electrochemical properties, were verified through cyclic voltammetry, field emission-scanning electron microscopy, energy-dispersive X-ray spectrometry, and X-ray diffraction. The results show that the sintering C–TiO2–Pd electrode improved the electrocatalytic activity of the semi-V-I RFB system, thereby effectively increasing the energy storage ability of the system. The C–TiO2–Pd electrode was used as a negative electrode in a single semi-V-I RFB and exhibited excellent cyclic performance in a charge-discharge test of 50 cycles. The average values for coulomb efficiency, voltage efficiency, and energy efficiency were approximately 96.56%, 84.12%, and 81.23%, respectively. Moreover, the semi-V-I RFB stacks were designed using series or parallel combination methods that can effectively provide the desired operating voltage and linearly increase the power capacity. The amount of vanadium salt required to fabricate the semi-V-I RFB system can be reduced by combining large stack modules of the system. Therefore, this system not only reduced costs but also exhibited potential for applications in energy storage systems

    Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption Thermodynamics

    No full text
    Fluoride contamination in water due to natural and anthropogenic activities has been documented as serious problems worldwide commanding a major threat to the environment. Present study focuses to synthesis bacterial-surfactin (Bacillus subtilis) mediated nano-hydroxyapatite (HAp), novel adsorbents for defluoridation. HAp particle size and morphology were controlled by varying temperature of 90–150 °C and pH of 7–11, respectively. The TEM and SEM micrographs reveal that the short-rod particle is observed 20–30 nm at 90 °C and pH 11. The ratio between the length (nm) and width (nm) of nanoparticle are decreased from 4.17 to 1.65 with increasing pH (7–11). The selected area diffraction (SAD) of particles are indicated uniform rod-like monocrystals. The XRD and FTIR observations were indicated the synthesized HAp nanoparticles were well-crystallized with purity phase and high quality. The study reflected that the fluoride removal from contaminated water by HAp was increased significantly (R2 = 99) with the increasing adsorbent concentration, temperature and time, with two-step adsorption process as the first portion a rapid adsorption occurs during first 90 min after which equilibrium is slowly achieved. The adsorption process is closer to Freundlich isotherm (R2 > 98) than to Langmuir isotherm (R2 ≈ 92), indicating HAp as a good adsorbent (n > 3). Above 97% of fluoride removal were noticed at a HAp dose of 0.06 g/10 mL. The adsorption kinetics more fit with pseudo-second-order (R2= 99) in compare to pseudo-first-order (R2 ≈ 91). The slope and intercept of Arrhenius equation indicated the activation/adsorption energy (Ea) of 3.199 kJ/mol and frequency factor (A) of 1.78 1/s. Adsorption thermodynamic parameters (free energy (ΔG 0) and entropy (ΔS > 0)) indicates the spontaneous and endothermic reactions of the adsorption process. Thus, newly synthesized HAp nanoparticles exhibit as a good adsorbent for fluoride removal, theoretically and experimentally being applicable for environmental pollution control
    corecore