7 research outputs found

    Metformin in Cervical Cancer: Metabolic Reprogramming

    Get PDF
    The reprogrammed metabolism plays a crucial role in intensively proliferating tumor cells to meet high energetic demands and adapt to metastasis and invasion. Metformin may counteract flexible metabolic phenotype of cervical cancer cells by restraining aerobic glycolysis (Warburg effect) and promoting mitochondrial-based metabolism. Metformin inhibits master oncogene c-Myc as well as hypoxia-inducible factor 1 (HIF-1伪) and suppresses its downstream glycolytic regulatory enzymes and glucose transporters. Metformin targets bioenergetics of cervical cancer cells with aggressive phenotype and regulates the expression of enzymes controlling tricarboxylic acid cycle (TCA cycle) supplementation with substrates, glucose, and glutamine. The exposition of cervical tumor cells to Metformin alleviates their migratory capacity, restrains epithelial-to-mesenchymal transition (EMT) program implementation, and elucidates oxidative stress, which results in massive cell death due to apoptosis. The metabolic alterations caused by Metformin are specific to cancer cells. In summary, Metformin exerts antitumor effect in cervical cancer cells by regulating specific molecular targets in reprogrammed metabolism. Metformin selectively modulates metabolic pathways and thus may be potentially used in new precisely targeted therapeutic strategies for cervical cancer

    Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs

    Get PDF
    Context: Crataegus monogyna L. (Rosaceae) (CM), Equisetum telmateia L. (Equisataceae) (ET), Geranium purpureum Vil. (Geraniaceae) (GP), Mentha suaveolens Ehrh. (Lamiaceae) (MS), and Lavandula stoechas L. spp. luisieri (Lamiaceae) (LS) are all medicinal. Objective: To evaluate the antioxidant, antiproliferative and antimicrobial activities of plant extracts and quantify individual phenolics and zinc. Material and methods: Aerial part extracts were prepared with water (W), ethanol (E) and an 80% mixture (80EW). Antioxidant activity was measured with TAA, FRAP and RP methods. Phenolics were quantified with a HPLC. Zinc was quantified using voltammetry. Antibacterial activity (after 48 h) was tested using Enterococcus faecalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes. Antiproliferative activity (after 24 h) was tested using HEP G2 cells and fibroblasts. Results: Solvents influenced results; the best were E and 80EW. GP had the highest antioxidant activity (TAA and FRAP of 536.90mg AAE/g dw and 783.48mg TE/g dw, respectively). CM had the highest zinc concentration (37.21 mg/kg) and phenolic variety, with neochlorogenic acid as the most abundant (92.91 mg/100 g dw). LS was rich in rosmarinic acid (301.71 mg/100 g dw). GP and LS inhibited the most microorganisms: B. cereus, E. coli and S. aureus. GP also inhibited E. faecalis. CM had the lowest MIC: 5830 mu g/mL. The antibacterial activity is explained by the phenolics present. LS and CM showed the most significant anti-proliferative activity, which is explained by their zinc content. Conclusion: The most promising plants for further studies are CM, LS and GP.FCT, Fundacao para a Ciencia e a Tecnologia of Portugal [SFRH/BSA/139/2014

    Effect of Erica australis extract on Caco-2 cells, fibroblasts and selected pathogenic bacteria responsible for wound infection

    Get PDF
    Plants from the genus Erica are used in many countries to treat several ailments. In this work we intend to evaluate the potential in vivo benefits of Erica australis L. by testing in vitro the effect induced by the plant extract when in contact with BJ fibroblasts (3 and 9 hours) and Caco-2 cells (3, 6 and 24 hours). Effects on five pathogenic microorganisms(Enterococcus faecalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Listeria monocytogenes) were also determined. It was found that the extracts enhanced fibroblast proliferation (maximum of 484% of control at 6 hour exposure) while Caco-2 cells viability was reduced in a concentration and time dependent manner (minimum of 22.3% of control at 24 hour exposure). Antimicrobial effects were also detected, with differences registered among the plant parts and solvent used, with the lowest minimum concentration for diffusion inhibition (MCDI) of 1 mg/mL. Results obtained with the fibroblasts and bacteria strongly show that this plant has potential to be used in wound healing as a stimulant of fibroblast growth and disinfection, as well as an antibiotic. Results obtained with Caco-2 cells indicate this plant also has some potential for and application as anticancer agent

    Caffeic Acid and Metformin Inhibit Invasive Phenotype Induced by TGF-尾1 in C-4I and HTB-35/SiHa Human Cervical Squamous Carcinoma Cells by Acting on Different Molecular Targets

    No full text
    During the progression of epithelial cancer, the cells may lose epithelial markers and gain mesenchymal phenotype via Epithelial-Mesenchymal Transition (EMT). Such transformation of epithelial cancer cells to mesenchymal-like characteristic benefits plasticity and supports their ability to migrate. The aim of this study was to evaluate the influence of natural compound Caffeic Acid (CA) alone and in combination with antidiabetic drug Metformin (Met) on metastatic progression of two human cervical squamous cell cancer lines, C-4I and HTB-35/SiHa cells. EMT program was triggered by exposition of both epithelial cell lines to TGF-尾1. Gene expression patterns related to epithelial/mesenchymal phenotype were evaluated by Real-Time PCR analysis and the protein amount was detected by western blot. The treatment of human squamous cancer cells with CA and with Met, suppressed the motility of cells and the effect depended on a particular cell line. Both compounds regulated the EMT process in C4-I and HTB-35 cells by interfering with different molecular targets. In TGF-尾1-stimulated C4-I cells, CA suppressed the expression of mesenchymal transcription factor SNAI1 which resulted in enhanced expression of epithelial markers E-cadherin, Occludin and Claudin. Additionally, CA blocked MMP-9 and upregulated TIMP-1 expression, a specific inhibitor of MMP-9. In HTB-35 cells stimulated with TGF-尾1, Met decreased the expression of Vimentin. By suppressing hypoxia master regulator HIF-1伪, Met caused downregulation of CAIX, an enzyme involved in metastasis of aggressive malignant cells. In this study we showed that CA and Met inhibited EMT process in cancer cells via different mechanisms. However, when applied together, compounds exerted the greater effect on EMT than each compound alone. This is the first report revealing that CA alone and co-treated with Met may reverse mesenchymal phenotype of TGF-尾1-treated cervical tumor cells and we believe that the use of the two small molecules may be considered as a potential therapeutic approach for metastatic cervical cancer

    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1伪-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines

    Get PDF
    The small molecules, natural antioxidant Caffeic Acid (trans-3,4-Dihydroxycinnamic acid CA) and anti-diabetic drug Metformin (Met), activate 5′-adenosine monophosphate-activated protein kinase (AMPK) and interfere with metabolic reprogramming in human cervical squamous carcinoma cells. Here, to gain more insight into the ability of CA, Met and the combination of both compounds to impair aerobic glycolysis (the “Warburg effect”) and disrupt bioenergetics of cancer cells, we employed the cervical tumor cell lines C-4I and HTB-35/SiHa. In epithelial C-4I cells derived from solid tumors, CA alleviated glutamine anaplerosis by downregulation of Glutaminase (GLS) and Malic Enzyme 1 (ME1), which resulted in the reduction of NADPH levels. CA treatment of the cells altered tricarboxylic acid (TCA) cycle supplementation with pyruvate via Pyruvate Dehydrogenase Complex (PDH), increased ROS formation and enhanced cell death. Additionally, CA and CA/Met evoked intracellular energetic stress, which was followed by activation of AMPK and the impairment of unsaturated FA de novo synthesis. In invasive HTB-35 cells, Met inhibited Hypoxia-inducible Factor 1 (HIF-1α) and suppressed the expression of the proteins involved in the “Warburg effect”, such as glucose transporters (GLUT1, GLUT3) and regulatory enzymes of glycolytic pathway Hexokinase 2 (HK2), 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4), Pyruvate Kinase (PKM) and Lactate Dehydrogenase A (LDH). Met suppressed the expression of c-Myc, BAX and cyclin-D1 (CCND1) and evoked apoptosis in HTB-35 cells. In conclusion, both small molecules CA and Met are capable of disrupting energy homeostasis, regulating oxidative metabolism/glycolysis in cervical tumor cells in regard to specific metabolic phenotype of the cells. CA and Met may provide a promising approach in the prevention of cervical cancer progression

    Identification of Predominant Phytochemical Compounds and Cytotoxic Activity of Wild Olive Leaves (Olea europaea L. ssp sylvestris) Harvested in South Portugal

    No full text
    This study has been aimed at providing a qualitative and quantitative evaluation of selected phytochemicals such as phenolic acids, flavonoids, oleuropein, fatty acids profile, and volatile oil compounds, present in wild olive leaves harvested in Portugal, as well as at determining their antioxidant and cytotoxic potential against human melanoma HTB-140 and WM793, prostate cancer DU-145 and PC-3, hepatocellular carcinoma Hep G2 cell lines, as well as normal human skin fibroblasts BJ and prostate epithelial cells PNT2. Gallic, protocatechuic, p-hydroxybenzoic, vanillic acids, apigenin 7-O-glucoside, luteolin 7-O-glucoside, and rutin were identified in olive leaves. The amount of oleuropein was equal to 22.64 g/kg dry weight. (E)-Anethole (32.35%), fenchone (11.89%), and (Z)-3-nonen-1-ol (8%) were found to be the main constituents of the oil volatile fraction, whereas palmitic, oleic, and alpha-linolenic acid were determined to be dominating fatty acids. Olive leaves methanol extract was observed to exerted a significant, selective cytotoxic effect on DU-145 and PC-3 cell lines. Except the essential oil composition, evaluated wild olive leaves, with regard to their quantitative and qualitative composition, do not substantially differ from the leaves of other cultivars grown for industrial purposes and they reveal considerable antioxidant and cytotoxic properties. Thus, the wild species may prove to be suitable for use in traditional medicine as cancer chemoprevention.Polish Ministry of Science and Higher Education [K/ZDS/004122, K/ZDS/006239, K/ZDS/006228]info:eu-repo/semantics/publishedVersio
    corecore