639 research outputs found
Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales
Most of the matter in the universe is not luminous and can be observed
directly only through its gravitational effect. An emerging technique called
weak gravitational lensing uses background galaxies to reveal the foreground
dark matter distribution on large scales. Light from very distant galaxies
travels to us through many intervening overdensities which gravitationally
distort their apparent shapes. The observed ellipticity pattern of these
distant galaxies thus encodes information about the large-scale structure of
the universe, but attempts to measure this effect have been inconclusive due to
systematic errors. We report the first detection of this ``cosmic shear'' using
145,000 background galaxies to reveal the dark matter distribution on angular
scales up to half a degree in three separate lines of sight. The observed
angular dependence of this effect is consistent with that predicted by two
leading cosmological models, providing new and independent support for these
models.Comment: 18 pages, 5 figures: To appear in Nature. (This replacement fixes tex
errors and typos.
Reporting Outcomes of Extremely Preterm Births
Published reports of extremely preterm birth outcomes provide important information to families, clinicians, and others and are widely used to make clinical and policy decisions. Misreporting or misunderstanding of outcome reports may have significant consequences. This article presents 7 recommendations to improve reporting of extremely preterm birth outcomes in both the primary and secondary literature. The recommendations should facilitate clarity in communication about extremely preterm birth outcomes and increase the value of existing and future work in this area
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity
We present a novel formulation for biochemical reaction networks in the
context of signal transduction. The model consists of input-output transfer
functions, which are derived from differential equations, using stable
equilibria. We select a set of 'source' species, which receive input signals.
Signals are transmitted to all other species in the system (the 'target'
species) with a specific delay and transmission strength. The delay is computed
as the maximal reaction time until a stable equilibrium for the target species
is reached, in the context of all other reactions in the system. The
transmission strength is the concentration change of the target species. The
computed input-output transfer functions can be stored in a matrix, fitted with
parameters, and recalled to build discrete dynamical models. By separating
reaction time and concentration we can greatly simplify the model,
circumventing typical problems of complex dynamical systems. The transfer
function transformation can be applied to mass-action kinetic models of signal
transduction. The paper shows that this approach yields significant insight,
while remaining an executable dynamical model for signal transduction. In
particular we can deconstruct the complex system into local transfer functions
between individual species. As an example, we examine modularity and signal
integration using a published model of striatal neural plasticity. The modules
that emerge correspond to a known biological distinction between
calcium-dependent and cAMP-dependent pathways. We also found that overall
interconnectedness depends on the magnitude of input, with high connectivity at
low input and less connectivity at moderate to high input. This general result,
which directly follows from the properties of individual transfer functions,
contradicts notions of ubiquitous complexity by showing input-dependent signal
transmission inactivation.Comment: 13 pages, 5 tables, 15 figure
Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660
We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries
Selective resuscitation in premature twins: an ethical analysis
Selective resuscitation refers to the practice of providing resuscitative efforts to one or some (but not all) infants born in the setting of multiple gestation. When one fetus is known to have a severe anomaly or severe growth restriction, parents are sometimes offered this option. In the setting of extreme prematurity, in the absence of an anomaly or severe growth restriction, parents are generally expected to make one unified decision for all the infants involved. The introduction of the Outcome Estimator, a tool that provides the ability to make individual outcome predictions for each fetus in a multiple gestation at borderline gestational age, based on contributing variables such as weight and gender, has led to the ethical dilemma of whether parents in this setting should also be offered the option of selective resuscitation. No convincing ethical argument for denying the parents the right to decide for each individual infant is apparent
REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS ON CARNOT GROUPS
Abstract. Let G be a Carnot group with homogeneous dimension Q ≥ 3 and let L be a sub-Laplacian on G. We prove that the critical dimension for removable sets of Lipschitz L-harmonic functions is (Q − 1). Moreover we construct self-similar sets with positive and finite H Q−1 measure which are removable. 1
Measure of Activity Performance in the Hand (MAP-Hand) questionnaire
Background: Developed in the Norway, the Measure of Activity Performance of the Hand (MAP-Hand) assesses 18 activities performed using the hands. It was developed for people with rheumatoid arthritis (RA) using patient generated items, which are scored on a 0-3 scale and summarised into a total score range (0 to 54). This study reports the development and psychometric testing of the British English MAP-Hand in a UK population of people with RA.
Methods: Recruitment took place in the National Health Service (NHS) through 17 Rheumatology outpatient clinics. Phase 1 (cross-cultural adaptation) involved: forward translation to British English; synthesis; expert panel review and cognitive debriefing interviews with people with RA. Phase 2 (psychometric testing) involved postal completion of the MAP-Hand, Health Assessment Questionnaire (HAQ), Upper Limb HAQ (ULHAQ), Short-Form 36 (SF-36v2) and Disabilities of the Arm Shoulder Hand (DASH) to measure internal consistency (Cronbach’s alpha); concurrent validity (Spearman’s correlations) and Minimal Detectable Difference (MDC95). The MAP-Hand was repeated three-weeks later to assess test-retest reliability (linear weighted kappa and Intra-Class Correlations (ICC (2,1)). Unidimensionality (internal construct validity) was assessed using (i) Confirmatory Factor Analysis (CFA) (ii) Mokken scaling and (iii) Rasch model. The RUMM2030 software was used, applying the Rasch partial credit model.
Results: In Phase 1, 31 participants considered all items relevant. In Phase 2, 340 people completed Test-1 and 273 (80%) completed Test-2 questionnaires. Internal consistency was excellent (α=0.96). Test-retest reliability was good (ICC (2,1) = 0.96 (95% CI 0.94, 0.97)). The MAP-Hand correlated strongly with HAQ20 (rs=.88), ULHAQ (rs=.91), SF-36v2 Physical Functioning (PF) Score (rs=-.80) and DASH (rs=.93), indicating strong concurrent validity. CFA failed to support unidimensionality (Chi-Square 236.0 (df 120; p <0.001)). However, Mokken scaling suggested a probabilistic ordering. There was differential item functioning (DIF) for gender. Four testlets were formed, resulting in much improved fit and unidimensionality. Following this, testlets were further merged in pairs where opposite bias existed. This resulted in perfect fit to the model.
Conclusions: The British English version of the MAP-Hand has good validity and reliability in people with RA and can be used in both research and clinical practice.
Keywords: PROMS; Patient Reported Outcome Measures; hand activity performance; hand function; hand pain; psychometric testing; Rasch analysis; validity; reliabilit
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
Enzyme sequestration as a tuning point in controlling response dynamics of signalling networks
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications
- …
