6 research outputs found

    Clonal analysis of kit ligand a functional expression reveals lineage-specific competence to promote melanocyte rescue in the mutant regenerating caudal fin

    Get PDF
    The study of regeneration in an in vivo vertebrate system has the potential to reveal targetable genes and pathways that could improve our ability to heal and repair damaged tissue. We have developed a system for clonal labeling of discrete cell lineages and independently inducing gene expression under control of the heat shock promoter in the zebrafish caudal fin. Consequently we are able to test the affects of overexpressing a single gene in the context of regeneration within each of the nine different cell lineage classes that comprise the caudal fin. This can test which lineage is necessary or sufficient to provide gene function. As a first example to demonstrate this approach, we explored which lineages were competent to functionally express the kit ligand a protein as assessed by the local complementation of the mutation in the sparse-like (kitlgatc244b) background. We show that dermal fibroblast expression of kit ligand a robustly supports the rescue of melanocytes in the regenerating caudal fin. kit ligand a expression from skin and osteoblasts results in more modest and variable rescue of melanocytes, while lateral line expression was unable to complement the mutation

    Physical activity monitoring: Addressing the difficulties of accurately detecting slow walking speeds

    Get PDF
    OBJECTIVE: To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). BACKGROUND: Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. METHODS: A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. RESULTS: Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). CONCLUSIONS: The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD

    The agrarian origins of US capitalism: The transformation of the northern countryside before the civil war

    No full text
    corecore