63 research outputs found

    Physics of Zonal Flows

    Get PDF
    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as "drift wave-zonal flow turbulence." In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress

    A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1

    Get PDF
    A fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. The main suppression action is located in a thin radial layer around ψN ≅ 0.96–0.98, where ψN is the normalized poloidal flux, with the time scale ~0.1 ms

    ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory

    Full text link
    We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines. The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease. These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced pedestal profile to refill. An increase in fELMSMBI/fELM0 and a decrease in the energy loss per ELM ΔWELM were achieved in both machines. Physical insight was gleaned from studies of density and vΊ (toroidal rotation velocity) evolution, particle flux and turbulence spectra, divertor heat load. The characteristic gradients of the pedestal density soften and a change in vΊ was observed during a τI time. The spectra of the edge particle flux Γ ∌ 〈áčœrñe〉 and density fluctuation with and without SMBI were measured in HL-2A and in KSTAR, respectively. A clear phenomenon observed is the decrease in divertor heat load during the τI time in HL-2A. Similar results are the profiles of saturation current density Jsat with and without SMBI in KSTAR. We note that τI/τp (particle confinement time) is close to ∌1, although there is a large difference in individual τI between the two machines. This suggests that τI is strongly related to particle-transport events. Experiments and analysis of a simple phenomenological model support the important conclusion that ELM mitigation by SMBI results from an increase in higher frequency fluctuations and transport events in the pedestal. © 2014 IAEA, Vienna

    Methods for Characterising Microphysical Processes in Plasmas

    Full text link

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Nonlinear transfer in heated L-modes approaching the L–H transition threshold in Alcator C-Mod

    No full text
    Nonlinear transfer processes between large-scale edge flows and the ambient broadband fluctuations have been shown to play a significant role in the dynamics of edge turbulence, including spreading power from coherent modes and suppressing turbulence at the formation of edge transport barriers. In order to predict thresholds of confinement regimes, both the transition dynamics and the parametric dependence of the nonlinear energy transfer must be studied. Since the expected flow damping terms depend on ion collision rates and local safety factors, recent experiments aimed also to explore the nonlinear drive at various values of the plasma current, density and amount of auxiliary heating. Nonlinear interactions between zonal flows and turbulence in L-mode are estimated using bispectral as well as time-resolved methods based on gas-puff-imaging in Alcator C-Mod [1]

    Implications of PMI and wall material choice on fusion reactor tritium self-sufficiency

    No full text
    Tritium self-sufficiency is a critical issue for the production of nuclear fusion energy. Here we quantify the impact of co-deposition of eroded wall material and fuel on the tritium particle balance in a hypothetical reactor system. The expected ITER plasma parameters and geometry are used to estimate the amount of eroded material from a full tungsten, beryllium or carbon device. Measured D concentrations in co-deposits are extrapolated to the wall temperature expected in future reactors and used along with these eroded flux estimates to determine the net loss probability of tritium from the device due to co-deposition. The use of liquid divertor surfaces is also considered with the amount of tritium residing in the recirculating liquid estimated. The general conclusion, from a tritium self-sufficiency viewpoint, is that one should avoid low-Z materials that readily form hydrogen bonds, in favor of high-Z non-hydride forming materials. Keywords: Plasma-material interactions, Co-deposition, Tritium, Self-sufficienc
    • 

    corecore