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Abstract

The derivation of the correct functional form of source terms in plasma fluid theory is revisited.

The relation between the fluid source terms and atomic physics differential cross sections is estab-

lished for particle-impact ionization. It is shown that the interface between atomic and plasma

physics is completely described by three scalar functions of the incident particle energy. These

are the total cross section and the newly introduced forward momentum and energy functions,

which are properties of the differential cross sections only. For electron-impact ionization, the

Binary-Encounter-Bethe (BEB) and Binary-Encounter-Dipole (BED) models [Y.-K. Kim and M.

E. Rudd, Phys. Rev. A, 50 (1994) 3954] are used to calculate these functions analytically, yielding

expressions that both accurately capture the physics and can be efficiently evaluated within fluid

simulation codes. The source terms explain the observed electron temperature regimes in a wide

variety of basic plasma physics experiments, including the trends across different gases.
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I. INTRODUCTION

Numerical simulations of plasma turbulence and transport in magnetic confinement fusion

devices can be divided into three main groups: (i) Gyrokinetic simulations of the plasma

core; (ii) transport codes using reduced models to simulate entire discharges; (iii) fluid

simulations of the plasma edge and Scrape-Off-Layer (SOL). The treatment of sources and

sinks has a very different status in each of these code families.

Gyrokinetic codes initially focused on the computation of heat fluxes in the plasma core

for prescribed profiles. As the simulated time span was much shorter than the confinement

time, the effect of sources and sinks could be neglected. However, gyrokinetic codes have

since evolved to address steady-state turbulence, for which sources and dissipation needed

to be added. At present, the source terms are chosen ad-hoc, either by adding an adjustable

right-hand side that has the property to enforce a certain distribution function at certain

locations with a certain time constant [1–3], or by locally rescaling the energy of marker

particles [4]. Significant attention is devoted merely to the question whether a true statistical

steady-state is achieved in such simulations [2].

While the realistic modeling of sources in gyrokinetic codes is in its infancy, the opposite

is true for the family of transport codes such as ASTRA [5], ONETWO [6] and TRANSP [7]

for the tokamak core and B2-EIRENE [8], EDGE2D-NIMBUS [9] and UEDGE [10] for the

SOL. The reduced description of the plasma physics in these codes makes the simulation of

entire discharges in actual experimental devices tractable. Transport codes make extensive

use of modules libraries [11] to simulate plasma heating schemes and plasma-neutral inter-

action. These comprise ray-tracing codes such as TORAY-GA [12] to calculate the power

deposition and current-drive by RF waves [13], Monte-Carlo codes such as NUBEAM [14]

to calculate the power deposition and momentum transfer of fast neutrals/ions from neutral

beam injection [15], and Monte-Carlo codes implementing collisional-radiative models of the

SOL, such as EIRENE [8], NIMBUS [9] and DEGAS2 [16]. These codes generally include

a fairly complete and sophisticated description of atomic physical processes, but, to our

knowledge, have not taken the step to make use of differential cross sections to calculate

sources and sinks kinetically.

While transport codes employ macroscopic models for the turbulent transport, edge tur-

bulence codes, such as BOUT [17] and ESEL [18], follow the fluid turbulent dynamics
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self-consistently. For the tokamak edge and SOL, these simulations generally adopt a flux-

driven framework, where the sources lie outside of the simulated domain, thus avoiding the

problem of dealing with volume sources and sinks to a certain extent [18]. However, it has

been realized that basic plasma physics experiments, such as the torsatron TJ-K [19], the

linear devices CSDX [20] and VINETA [21], and the simple magnetized tori TORPEX [22]

and HELIMAK [23], provide ideal testbeds for fluid turbulence simulation codes, and efforts

have begun to validate the models behind the codes against these experiments [24–31]. In

these devices, volume sources due to ionization via a fast electron population are dominant.

Earlier simulations prescribed the time-average profiles [24–26, 28, 29], in which case no

explicit sources are necessary. To allow for self-consistently evolving profiles, newer simu-

lations implemented ad-hoc source terms [27, 30]. While reference [27] used an isothermal

model, in which only a density source needed to be assumed, reference [30] allowed for a fully

turbulent temperature evolution, making both a density and an energy source necessary. Im-

plementing ad-hoc choices for the source terms, simulations of the TORPEX device showed

a strong dependence of the turbulence dynamics on the freely adjustable temperature source

ST [30]. In particular, an ‘H-mode’ like regime was predicted, in which the emergence of

blobs [32] would be suppressed. However, this regime could not be observed experimentally

[33]. Attempts to estimate ST from experimental data or to relate it to the experimentally

more accessible density source Sn have failed, revealing instead more fundamental problems

with the formulation of sources in [30]. This highlights the necessity to revisit the problem

of self-consistent source formulation for fluid turbulence codes – in analogy to the evolution

of transport codes.

Although much can be learned and taken from the development of transport codes, the re-

quirements to implement sources in turbulence codes, which have to use a much smaller time

step, are not exactly compatible. For example, time-consuming Monte-Carlo approaches to

determine ionization rates are not so attractive. One would also not want to lose the ad-

vantage of applying analytical theory, facilitated by the generally simpler geometry, such

that a deterministic and, if possible, analytical description of sources would be favorable.

However, no compromises should be made on the consistency of density, momentum and

energy sources, as the transfer of energy between the different forms is an aspect of primary

importance in turbulence studies.

The goal of this paper is to provide such a practical, self-consistent description of sources
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for fluid turbulence simulations, focusing on electron-impact ionization. The derivation of

self-consistent source terms in fluid plasma theory is revisited (section II) and their relation

to atomic physics differential cross sections is established (section III). In section IV, a fairly

recent atomic physics theory is applied to analytically calculate self-consistent density, mo-

mentum and energy source terms, which can be evaluated efficiently within fluid turbulence

codes. In section V, we discuss the implications of these source terms, which accurately

explain the experimentally observed electron temperature regimes in a wide range of basic

plasma physics experiments, including the trends across different gases.

II. FUNCTIONAL FORM OF FLUID SOURCE TERMS

The starting point to derive self-consistent fluid source terms for each species with mass

m and charge q is the kinetic equation augmented by a source term

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∇vf = C{f}+ S(x,v, t), (1)

where C{f} is the collision operator, accounting for all elastic processes, and S(x,v, t)

is a completely general kinetic source term, which in principle accounts for all inelastic

atomic and molecular processes in the plasma, such as ionization, recombination and charge

exchange, as well as absorption and emission of radiation. Since the following procedure is

only partially described in the literature [8, 34–36], the full derivation shall be given here.

Taking the moments {1, mv, m
2
v2} of (1) leads to the fluid equations in the laboratory frame

(subscript “L”), also called conservative form:

∂n

∂t
+∇ · (nV) = Sn, (2)

m
∂(nV)

∂t
+∇p +∇ · (↔π + mnVV)− qn(E + V ×B) = R + Sk,L, (3)

∂

∂t

(
3

2
p +

1

2
mnV 2

)
+∇ ·Q− qnV · E = WL + SE,L, (4)

where

n ≡
∫

d3v f, nV ≡
∫

d3v vf, (5)

p ≡ m

∫
d3v w2f, πij ≡ m

∫
d3v(wiwj − w2δij)f, (6)

q ≡ m

2

∫
d3v w2wf, Q ≡ q +

5

2
pV +

↔
π ·V +

1

2
mnV 2V, (7)
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where w ≡ v −V, and

0 =

∫
d3v C, Sn ≡

∫
d3v S, (8)

R ≡ m

∫
d3v v C, Sk,L ≡ m

∫
d3v v S, (9)

WL ≡
m

2

∫
d3v v2 C, SE,L ≡

m

2

∫
d3v v2 S. (10)

It is useful to define the average operator

〈·〉 ≡
∫

d3v S(v)(·)∫
d3v S(v)

(11)

to highlight the relation of the momentum and energy sources to the particle source:

Sk,L = 〈k〉Sn, (12)

SE,L = 〈E〉Sn, (13)

where k ≡ mv and E ≡ m
2
v2. The fluid equations in the plasma frame can be obtained

either by repeatedly substituting the lower-order moment equations into the higher-order

moment equations, or by calculating the moments {1, mw, m
2
w2} directly:

dn

dt
+ n∇ ·V = Sn, (14)

mn
dV

dt
+∇p +∇ · ↔π − qn(E + V ×B) = R + Sk, (15)

3

2

dp

dt
+

5

2
p∇ ·V +

↔
π : ∇V +∇ · q = W + SE , (16)

where d/dt ≡ ∂/∂t + V · ∇,
↔
π : ∇V ≡ πij∂iVj, W ≡ WL −V ·R, and Sk and SE are the

sources in the plasma frame:

Sk ≡ Sk,L −mVSn = (〈k〉 −mV)Sn, (17)

SE ≡ SE,L −V · Sk,L +
m

2
V 2Sn =

(
〈E〉 −V · 〈k〉+

m

2
V 2
)

Sn. (18)

Note the contributions from the lower-order source moments that appear due to the trans-

formation to the plasma frame.

If the momentum and energy equations are rewritten into equations for the velocity V

and the temperature T ≡ p/n of the form ∂V/∂t + . . . = SV and ∂T/∂t + . . . = ST , the

source terms take the form:

SV (n,V) ≡
(
〈k〉
m

−V

)
Sn

n
, (19)

ST (n,V, T ) ≡ 2

3

(
〈E〉 −V · 〈k〉+

m

2
V 2 − 3

2
T

)
Sn

n
. (20)
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In cases where ambipolarity holds, the speed V of electrons and ions is limited by V . cs,

where cs ≡
√

Te/mi is the sound speed. Therefore, for electrons, the ratio between the energy

in the directed motion to the thermal energy scales as |(Ve · 〈ke〉 − me

2
V 2

e )/(〈Ee〉 − 3
2
Te)| ∼

c2
s/v

2
the = me/mi � 1. In such a case, the electron temperature source term may be

approximated as

STe(ne,Ve, Te) ≈
(

2

3
〈Ee〉 − Te

)
Sne

ne

. (21)

The sources SV and ST act to equilibrate the plasma velocity and temperature to the average

velocity and thermodynamic kinetic energy (in the plasma frame) of the newly generated

particles, respectively. This happens at the same rate Sn/n at which new particles are

generated. It is obvious that SV and ST dynamically assume both positive and negative

values, depending on whether the current plasma velocity and temperature is lower or higher

than the neutral values

V∞ ≡ 〈k〉
m

, T∞ ≡ 2

3

(
〈E〉 − 〈k〉2

2m

)
. (22)

As even the first few plasma particles are generated with the average momentum 〈k〉 and

average energy 〈E〉, appropriate initial conditions for numerical simulations are V(0) = V∞

and T (0) = T∞. Isothermal models are compatible with the self-consistent source terms if

T = T∞.

A. Action of the sources

In the following, we consider a few illustrative cases to understand the interdependent

action of the density, velocity and temperature sources. We assume a homogeneous plasma

(∇ → 0), with no fields (E = 0, B = 0) and no collisions (R = 0, W = 0). The fluid

equations reduce to ∂n/∂t = Sn, ∂V/∂t = SV and ∂T/∂t = ST , or in conservative form

∂n

∂t
= Sn, (23)

∂(nV)

∂t
=
〈k〉
m

∂n

∂t
, (24)

∂

∂t

(
3

2
p +

1

2
mnV 2

)
= 〈E〉∂n

∂t
. (25)
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FIG. 1: Action of the source terms in Eq. 28 for density, velocity, and temperature, for

〈k〉2/(2m〈E〉) = 0.2.

Assuming that 〈k〉 and 〈E〉 are constant in time, the momentum and energy equations can

be integrated regardless of the actual form of Sn:

V(t) = V0
n0

n
+
〈k〉
m

(
1− n0

n

)
, (26)

3

2
T (t) =

(
3

2
T0 −

m

2
(V 2 − V 2

0 )

)
n0

n
+
(
〈E〉 − m

2
V 2
)(

1− n0

n

)
, (27)

where n0 ≡ n(0), V0 ≡ V(0) and T0 ≡ T (0) are the initial conditions. As n gets much

larger than n0, the limits for velocity and temperature stay finite, and are given by V∞ and

T∞ as given in Eq. 22. The fact that V and T do not grow without bounds reflects their

true nature as intensive thermodynamic quantities, as opposed to momentum and energy,

which are extensive thermodynamic variables.

We now consider three different forms for Sn and their solution for n(t):

Sn = Sn0 : n(t) = n0 + Sn0t, (28a)

Sn =
n

nn

Sn0 : n(t) = n0 exp

(
Sn0

nn

t

)
, (28b)

Sn =
n

nn

(
1− n

nn

)
Sn0 : n(t) =

n0

n0

nn
+
(
1− n0

nn

)
exp

(
− Sn0

nn
t
) , (28c)

where nn is the density of neutral atoms. Case (a) represents the situation where the plasma

production is decoupled from the plasma, such as plasma production by an independent

beam. Cases (b) and (c) correspond to a situation where the plasma provides the electrons

necessary for ionization, with case (c) accounting for the depletion of the target population
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as the number of ionized atoms increases. Figure 1 illustrates the action of the source terms

in Eq. 28 on density, velocity and temperature for the case 〈k〉2/(2m〈E〉) = 0.2. The initial

conditions are n0 = 0.05 nn, V0 = 0.95 V∞, T0 = 1.05 T∞, representing a case where the

source acts to reduce the temperature. For the form of the density source in Eq. 28c, plasma

production comes to a stop once all available neutrals are ionized (n = nn). As n/n0 cannot

grow without bounds in this case, the limits V∞ and T∞ are only approximately reached.

III. RELATION TO DIFFERENTIAL CROSS SECTIONS

So far, our analysis was completely general and consisted merely of algebraic manip-

ulations of an arbitrary source term S(v) in the kinetic equation. We now turn to the

formulation of source terms for a specific physical process, namely binary particle-impact

ionization, in which a single incident particle strikes an atom/ion and frees a single electron.

This includes electron-impact, ion-impact and photo-ionization, which are the generating

processes for the vast majority of laboratory, astrophysical and fusion plasmas. The follow-

ing discussion is, to the best of our knowledge, the first in plasma physics literature that

applies differential atomic-physics cross sections to compute plasma density, momentum and

energy sources self-consistently.

For the following treatment to remain valid for massless incident particles, and to facilitate

cross-referencing with atomic physics literature, we will use distribution functions of the form

F (E , θ, ϕ) to describe the particle populations, where E is the particle energy and (θ, ϕ) are

the angles of the momentum vector k in standard spherical coordinates. If the particles have

mass, F (E , θ, ϕ) can be related to the commonly used distribution function f(v) in plasma

physics via f(v)d3v = F (E , θ, ϕ)dEdΩ, where d3v = v2dv dΩ and dΩ ≡ sin θ dθ dϕ. Hence

F (E , θ, ϕ) =
v

m
f(v). (29)

In general, sources due to ionization involve three distinct particle populations, namely

the fast particles F ′, consisting of incident particles that scatter after the interaction, the

ejected electrons Fe, and the recoil ions Fi. Here and in the following, we assume that the

target population is at rest for simplicity. The case F ′ = Fe can be treated as a special

case. It is clear that the particle, momentum and energy conservation properties of the

individual ionization events must reflect in the conservation properties of the source terms
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S ′, Se and Si. It is indeed possible to derive a system of source terms which satisfies

all required conservation properties from a so-called kinematically complete description of

the atomic fragmentation process, which completely describes the probability of all possible

combinations of momentum vectors in so-called fully differential cross sections [37]. However,

as it is our goal to provide practical expressions for source terms in this paper, we defer this

discussion to a separate paper.

Here, we restrict ourselves to the case where the distribution function of the fast particle

population F ′(E ′, θ′, ϕ′) is – up to a scaling factor – not part of the self-consistent plasma

description. This is a good approximation if (i) the production mechanism of the fast

particles is (mostly) independent of the plasma dynamics, (ii) the fast particles have enough

energy to leave the plasma before they thermalize, and (iii) one is mostly interested in

low-frequency electrostatic turbulence, such that the only relevant interaction of the fast

particles with the plasma is via ionizing collisions. This simplification applies reasonably well

to plasma production schemes used in basic plasma physics experiments, such as injection

of RF waves [38–40], helicon waves [25, 41, 42], or cathode-anode discharges [43, 44].

The common case of electron-impact ionization, where F ′ also represents an electron

population, is subject to a subtlety, as the two electrons after the ionization process are

in principle indistinguishable. To be consistent with our assumption that F ′ is mostly

decoupled from the plasma, only one of the two electrons can become part of Fe, while

the other must remain part of F ′. Fortunately, for sufficiently high incident energies E ′,

the overwhelming majority of ionization events generate one slow and one fast electron

with clearly distinct energies (see figure 2 (b)). A distinction based on energy is therefore

meaningful, demanding that the slower electron be part of Fe and the faster be part of F ′.

When integrating over the energy distribution of electrons after the ionization to determine

properties of the plasma, the upper integration boundary must thus be chosen as (E ′−B)/2,

i.e. half the total available energy for the two electrons (B is the binding energy). If

the incident particles are not electrons, no such subtlety applies, in which case the upper

integration boundary is E ′ − B. Differential cross sections in atomic physics literature are

generally already normalized for the applicable integration boundaries.

In the following, we formulate kinetic source terms in terms of differential cross sec-

tions and compute the self-consistent fluid source terms by carrying out the velocity-space

integrals. The ejected electron population after ionization is fully described by the double-
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differential cross section

d2σ(E ′, E , θ′′)

dΩ′′dE
=

1

2π sin θ′′
d2σ(E ′, E , θ′′)

dθ′′dE
, (30)

where E ′ is the energy of the incident particle, E is the energy of the ejected electron, θ′′ is

the angle between incident and outgoing momentum vectors, given by

cos θ′′ ≡ k̂ · k̂′ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′), (31)

and dΩ′′ is the differential solid angle in the frame of reference aligned with the incident

particle. Here, hats denote unit vectors: k̂ ≡ k/k, k̂′ ≡ k′/k′. The target population, which

can be atoms or ions, is described by a density nt and is assumed to be at rest. The kinetic

electron source term in Eq. 1 describing particle-impact ionization is then

S(v) =
mnt

v

∫
dE ′dΩ′ F ′(E ′, θ′, ϕ′)v′

d2σ(E ′, E , θ′′)

dΩ′′dE
=

mntn
′

v

〈
v′

d2σ

dΩ′′dE

〉′

, (32)

where n′ ≡
∫

dE ′dΩ′ F ′(E ′, θ′, ϕ′) and v′ ≡ v′(E ′) are the density and the (relativistic) speed

of the incident particles, respectively, and 〈·〉′ ≡ (1/n′)
∫

dE ′dΩ′ F ′(E ′, θ′, ϕ′)(·). The factor

m/v results again from dE = mv dv and d3v = v2dv dΩ.

A fully consistent kinetic source term for ions can in principle be inferred from the triple-

differential cross section, which, in addition to (30), is also differential in the solid angle

of the scattered particle. However, this is rather complicated and will be discussed in a

separate paper. Here, we only give the minimal kinetic ion source term, which is

Si(v) = Snδ
3(v). (33)

This ensures that as many ions as electrons are generated, but neglects all momentum and

energy sources for the ions.

The first three moments of the kinetic electron source term are:

Sn =

∫
d3v S = ntn

′
∫

dEdΩ

〈
v′

d2σ

dΩ′′dE

〉′

, (34)

Sk,L = m

∫
d3v v S = ntn

′
∫

dEdΩ (2mE)1/2 v̂

〈
v′

d2σ

dΩ′′dE

〉′

, (35)

SE,L =
m

2

∫
d3v v2 S = ntn

′
∫

dEdΩ E
〈

v′
d2σ

dΩ′′dE

〉′

. (36)

To calculate the integrals over the solid angle
∫ 4π

0
dΩ(·), a change of variables (θ, ϕ) →

(θ′′, ϕ′′) is performed, corresponding to a rotation of the coordinate system such that the
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z axis is aligned with v′. The Jacobian for this transformation is det(dΩ/dΩ′′) = 1. Thus∫ 4π

0
dΩ(·) =

∫ 4π

0
dΩ′′(·) =

∫ π

0
dθ′′ sin θ′′

∫ 2π

0
dϕ′′(·). The result is

Sn = ntn
′〈v′σ〉′, (37)

Sk,L = ntn
′〈v′σκ〉′, (38)

SE,L = ntn
′〈v′σε〉′, (39)

where 〈v′σ〉′, 〈v′σκ〉′ and 〈v′σε〉′ are the rate coefficients for particle, momentum and energy

generation, respectively. Here, we have introduced the forward momentum function κ(E ′)

and the energy function ε(E ′) of the ionization process, which are defined as

κ(E ′) ≡ 1

σ

∫
dE (2mE)1/2 cos θ′′

dσ

dE
, (40a)

ε(E ′) ≡ 1

σ

∫
dE E dσ

dE
, (40b)

where

cos θ′′(E ′, E) ≡
2π
∫ π

0
dθ′′ sin θ′′ cos θ′′ d2σ

dΩ′′dE
dσ/dE

. (41)

The functions κ(E ′) and ε(E ′) specify the average forward momentum and energy, respec-

tively, which is passed to the ejected electron during one ionizing collision, as a function

of the incident particle energy E ′ only. They are an entirely atomic physical property and,

together with σ(E ′), completely describe the interface between atomic physics and plasma

physics. Knowledge of the double-differential cross section is sufficient to compute both

functions. However, an important observation is that only the momentum in the forward

direction, i.e. in the direction of the incident particle, is required to completely describe the

plasma momentum source. This may lead to simplifications for atomic physics theory or

experiments if the forward momentum function is determined directly.

It is worth mentioning that the momentum source due to the ejected electrons can be

shown to vanish in many practical situations, such as photoionization or electron-impact

ionization at high energies [45, 46], for which cos θ′′ ' 0. This will be discussed in a separate

paper. Finally, the momentum source also vanishes for arbitrary κ(E ′) if
∫

dΩ′ v̂′F ′ = 0.

This is in particular the case for isotropic fast particle distributions.
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Gas H [47] H2 [47] He [49] Ne [47] Ar [50]

Orbital 1s 1σ 1s 2p 2s 1s 3p 3s 2p 2s 1s

B [eV] 13.6057 15.9800 24.587 21.60 48.47 866.9 15.82 29.24 249.18 326.0 3202.9

U [eV] 13.6057 15.9800 39.51 116.02 141.88 1259.1 78.07 103.5 651.4 683.1 4192.9

N 1 2 2 6 2 2 6 2 6 2 2

Q 0.5668 1.0000 0.8841 0.8213 0.1710 1.0462

KBED 1.5657 1.4134 1.1860

c2 −0.0225

c3 1.1775 1.1262 8.2401

c4 −0.4626 6.3982 −10.4769

c5 0.0890 −7.8055 3.9650

c6 2.1440 −0.0446

TABLE I: Atomic physics parameters necessary for the BEB, BEQ and BED theories. References

are given in the square brackets. The coefficients c1 and c7 are zero for all considered gases.

IV. THE BEB AND BED THEORIES FOR ELECTRON-IMPACT IONIZATION

We now focus on electron-impact ionization, being the dominant plasma generation mech-

anism in magnetic fusion devices as well as in basic plasma physics experiments. Electron-

impact ionization is extensively studied both experimentally [46] and theoretically [47] in

the quantum and atomic physics communities, who have mapped out and calculated total,

single-, double- and triple-differential cross sections for a wide range of atoms and molecules.

The goal of this section is to make use of this knowledge to compute accurate source terms

that can be used efficiently in fluid plasma physics simulations.

In particular, we will use the BEB (Binary-Encounter-Bethe) model, and its more sophis-

ticated versions, the BEQ (for “BEB with Q” in more recent publications [48]) and the BED

(Binary-Encounter-Dipole) models, which are derived from first principles with some empir-

ical adaptations in [47]. These theories remarkably achieve a completely analytical form of

the single-differential cross section (SDCS), which (i) depends only on relatively well-known

atomic/molecular constants, (ii) is free from adjustable parameters, (iii) is in principle ap-

plicable to any atom and sufficiently simple molecule, (iv) can be integrated analytically,

and most importantly (v) has been successfully validated against experimental SDCS’s for

a wide range of atoms and molecules to within experimental uncertainty of typically 5–15%.

According to the BEB, BEQ and BED theories, the SDCS for electron impact ionization

12



results from the sum of the contributions of each orbital, each of which take the form

dσ(E ′, E)

dE
=

S

B(t + u + 1)

{
− K

t + 1
f1(w) + Kf2(w) + ln t f3(w)

}
, (42)

where B is the orbital binding energy, and t ≡ E ′/B, w ≡ E/B and u ≡ U/B are the

normalized incident electron energy, outgoing electron energy and orbital kinetic energy,

respectively. Further, S ≡ 4πa2
0N(R/B)2, where a0 ≡ 0.52918 × 10−10 m is the Bohr atom

radius, N is the electron occupation number, and R ≡ 13.6057 eV is the Rydberg energy.

The functions f1(w), f2(w) and f3(w) are

f1(w) ≡ 1

w + 1
+

1

t− w
, f2(w) ≡ 1

(w + 1)2
+

1

(t− w)2
, (43)

and

fBEQ
3 (w) ≡ Q

(
1

(w + 1)3
+

1

(t− w)3

)
, fBED

3 (w) ≡ 1

N(w + 1)

df(w)

dw
, (44)

where df/dw are the differential oscillator strengths. In the BEQ theory, these are replaced

by the more generally available dipole constant Q ≡ (2/N)
∫∞

0
dw (w + 1)−1 df/dw. The

BEB theory emerges from the BEQ theory simply by setting Q = 1. The proportionality

factor K is given by

KBEQ ≡ 2−Q, KBED ≡ 2− Ni

N
, (45)

where Ni ≡
∫∞

0
dw df/dw. In the BED theory, the differential oscillator strengths are

approximated by a power series

df(w)

dw
=

M∑
m=1

cm

(w + 1)m
, (46)

where M ≤ 7 and the coefficients cm are tabulated [47]. For easier reference, table I summa-

rizes all necessary atomic physics parameters for the gases discussed in this paper. Reference

[47] recommends to use the BED theory if df/dw is known, the BEQ theory if Q is known,

and the BEB theory if neither of these are available. However, it appears that the sim-

pler BEB theory has been most widely adopted in more recent publications, presumably

because the gain in accuracy does not necessarily justify the increase in complexity (figure

2). In addition, due to the non-symmetric form of f3(w) in (44), the BED theory does not

look consistent with the necessary symmetry E ↔ E ′ − B − E , which results from the fact

13
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FIG. 2: Comparison between BED and BEB cross sections for H, H2 and He. (a) Total cross

section σ(E ′). (b) Single-differential cross section dσ/dE for E ′ = 100 eV.

that the incident and ejected electrons are indistinguishable after the ionization process.

The interpretation of this should be clarified by the authors of the BED theory. As this pa-

per aims at providing simple and easy-to-implement expressions for the source terms in fluid

plasma simulations, we will mostly make use of the BEB theory, but perform all calculations

analogously for the BED theory for completeness.

We now proceed to calculate

σ(E ′) =

∫ E′−B
2

0

dE dσ

dE
, ε(E ′) =

1

σ(E ′)

∫ E′−B
2

0

dE E dσ

dE
, (47)

where the upper integral boundary was chosen as (E ′ −B)/2 to account only for the slower

electron, as discussed previously. We obtain

σ(E ′) =
S

t + u + 1

{(
D0(t)−

K

t + 1

)
ln t + K(1− t−1)

}
, (48a)

ε(E ′) =
S

t + u + 1

{(
D1(t)−K

2t + 1

t + 1

)
ln t + 3K ln

t + 1

2

}
B

σ(E ′)
, (48b)
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FIG. 3: Monoenergetic rate coefficients for particle generation (a) and achievable plasma electron

temperature (b) as a function of the incident electron energy E ′ for H2, He, Ne and Ar in the BEB

model. Markers indicate values at the peak ionization efficiency.

where Dn(t) ≡
∫ (t−1)/2

0
dw wnf3(w) is

DBEQ
0 (t) =

Q

2
(1− t−2), (49)

DBEQ
1 (t) =

Q

2

(t− 1)2

t(t + 1)
, (50)

and

DBED
0 (t) =

1

N

M∑
m=1

cm

(
1− ( 2

t+1
)m
)
, (51)

DBED
1 (t) =

1

N

{
M−1∑
m=1

cm+1 + cm

m

(
1− ( 2

t+1
)m
)
− cM

M

(
1− ( 2

t+1
)M
)
− c1 ln 2

t+1

}
. (52)

The results from equation (48), in the form of v′σ(E ′) and 2
3
ε(E ′), are shown in figure 3 for

the BEB model for H2, He, Ne and Ar.

A. Monoenergetic population of fast electrons

In the case of plasma production by hot cathode and extraction anode, such as used in the

linear device LAPD [51], the fast electron population is well described by a monoenergetic
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directed beam

F ′(E ′, θ′, ϕ′) =
n′

2π sin θ′
δ(E ′ − eV ′)δ(θ′), (53)

where V ′ is the extraction voltage. We obtain

Sn = ntn
′

√
2eV ′

m
σ(eV ′), (54)

〈k〉 = κ(eV ′) ẑ, (55)

〈E〉 = ε(eV ′). (56)

The maximum plasma electron temperature as a function of the extraction voltage is thus

given by

T∞(V ′) =
2

3

(
ε(eV ′)− κ2(eV ′)

2m

)
' 2

3
ε(eV ′), (57)

where ε(eV ′) is given by (48b) and shown in figure 3(b). Measurement of the electron temper-

ature in LAPD as a function of the extraction voltage would constitute a good experimental

test of the proposed source terms.
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B. Maxwellian population of fast electrons

In the case that the electron population responsible for ionization is described by an

isotropic Maxwellian with temperature T ′:

F ′(E ′, θ′, ϕ′) =
n′

4π

2√
π

(
E ′

T ′

)1/2

exp

(
−E

′

T ′

)
1

T ′ , (58)

we have

Sn = ntn
′ 2

√
2√

πmT ′3

∫
dE ′ E ′ exp

(
−E

′

T ′

)
σ(E ′), (59)

〈k〉 = 0, (60)

〈E〉 =

∫
dE ′ E ′ exp

(
− E ′

T ′

)
σε(E ′)∫

dE ′ E ′ exp
(
− E ′

T ′

)
σ(E ′)

. (61)

The results are shown in figure 4, which will be discussed and compared to the monoenergetic

case (figure 3) in the following.

V. DISCUSSION

The most obvious conclusion from figures 3 and 4 is that it is inherently difficult to

influence the plasma electron temperature by changing the parameters of the source, which

ultimately requires changing the energy of the fast electrons. As a rough guideline, to achieve

a 50% increase in Te, the primary electron energy would have to be increased by an order

of magnitude. In addition, such a change would have a somewhat stronger effect on the

plasma density, which in first approximation is proportional to the rate coefficients 〈v′σ〉′.

Experimentalists therefore – implicitly or explicitly – optimize their setup to operate at

a working point close to the maximum ionization efficiency, which also has the advantage

to maximize the probability of a breakdown. We therefore argue that, for the common

case where the primary electron energies are unknown, the most suitable assumption for

simulation source parameters E ′ or T ′ is one that maximizes the ionization efficiency 〈v′σ〉′.

The weak dependence of σ(E ′) and ε(E ′) on E ′ makes this assumption suitable for a wide

range of conditions.

The values at the peak ionization efficiency are highlighted in figures 3 and 4, and re-

produced in table II. First, we note that the results are rather insensitive to the actual

17



Monoenergetic Maxwellian

E ′peak [eV] v′σpeak [10−13 m3 s−1] T∞,peak [eV] T ′peak [eV] 〈v′σ〉′peak [10−13 m3 s−1] T∞,peak [eV]

H2 190 0.59 9.8 224 0.51 10.6

He 329 0.30 15.7 382 0.26 16.8

Ne 495 1.00 17.3 548 0.88 18.1

Ar 358 1.67 12.6 401 1.48 13.6

TABLE II: Fast electron energy E ′peak, rate coefficients 〈v′σ〉′peak, and maximum achievable electron

temperature T∞,peak, at the peak ionization efficiency, compared for the monoenergetic (figure 3)

and Maxwellian cases (figure 4).

shape of the fast electron distribution, as the parameters characterizing the peak differ by

only 10-20% between the monoenergetic and Maxwellian cases. The optimum fast electron

energies, which should result in the highest plasma densities, are in the range of 200 eV for

hydrogen and 300-550 eV for the noble gases. The trends of increasing 〈v′σ〉′peak from helium

to neon to argon agree with experimentally observed trends in the plasma density in the

TJ-K [25] and TORPEX devices [52], but the prediction of a higher plasma density in H2

than in helium is at odds with the experimental observations [33, 52, 53]. This could be due

to several factors, including (i) the fact that both non-dissociating (H2+e− → H+
2 +2e−) and

dissociating (H2 + e− → H + H+ + 2e−) ionization events exist, which the theories discussed

here are not able to distinguish, (ii) the strong chemical activity of hydrogen, and (iii) the

fact that hydrogen is subject to larger sheath losses due to the smaller ion mass. Ultimately,

sources, transport and sinks must be simultaneously understood for a rigorous comparison

with experimental profiles, which makes this task so challenging.

The biggest success of the presented source terms is the explanation of the maximum

plasma electron temperatures achieved in basic plasma physics experiments, including the

trends across different gases, which are compiled in table III for a wide range of devices.

A comprehensive database of different gases has been gathered on the torsatron TJ-K for

different plasma production schemes [25, 53, 54]. In inductively coupled hydrogen discharges,

a maximum electron temperature of 12 eV was observed [53]. In helicon discharges, the

temperatures in helium did not exceed 23 eV, with most observations less than 18 eV,

while the temperature in argon was found to be less than 10 eV [25]. In RF discharges, the

maximum values were 13 eV for hydrogen, 19 eV for helium, with most observations less than

13 eV, and 12 eV for argon [39]. These temperatures are in good quantitative agreement with
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Linear devices Simple magnetized tori Torsatron

CSDX VINETA LAPD BETA BLAAMANN TORPEX TJ-K T∞,peak

Helic. [41] Helic. [42] Cath. [44] RF [38] Filam. [43] RF [55] RF [52] Induct. [53] Helic. [25] RF [39] Maxw.

H2 7 7.5 4 8 12 13 10.6

He 8 9 14 18 (23) 13 (19) 16.8

Ne 12 18.1

Ar 3 3.5 6 7 10 12 13.6

TABLE III: Compilation of the maximum electron temperatures in eV reported from different

basic plasma physics experiments for different plasma production schemes. References are given

in the square brackets. Values in parentheses are statistical outliers. The maximum achievable

electron temperature derived from the source terms (last column) explains the experimentally

reached temperatures and correctly captures the trends across different gases.

the predictions from the BEB theory (H2: 10.6 eV; He: 16.8 eV; Ar: 13.6 eV). In particular,

our source terms correctly capture the fact that helium plasmas are systematically about 30–

100% hotter than hydrogen and argon plasmas, which is also reported from RF discharges in

the simple magnetized tori BLAAMANN (H2: 4 eV; He: 9 eV; Ar: 6 eV [55]) and TORPEX

(H2: 8 eV; He: 14 eV; Ar: 7 eV [52]). Electron temperatures for neon are found similar to

helium in TORPEX (He: 14 eV; Ne: 12 eV [52]), which is also consistent with the BEB

theory prediction (He: 16.8 eV; Ne: 18.1 eV).

This kind of agreement is remarkable, given that neither any plasma transport and loss

mechanisms have yet been considered, nor any knowledge of the primary electron energies

has been available. This highlights the excellent potential of the proposed source terms to

significantly improve the realism of simulations of basic plasma physics experiments and

tokamak SOLs.

A. Implications for TORPEX ‘H-mode’ simulations

In the following, we discuss the implications of this work for two-dimensional interchange

turbulence simulations [30], which predict an ‘H-mode’ like regime in TORPEX for long

parallel connection lengths and high temperature source strengths. Experiments in which the

connection length was scanned over the full geometrically possible range, by using the vertical

magnetic field Bz as the control parameter [56], did not lead to the identification of such a

regime [33]. Subsequent investigations showed problems in relating the temperature source
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FIG. 5: Maximum time-average electron temperature achieved by 2D TORPEX simulations in [30]

(from equation (64)). Simulations falling in the ‘H-mode’ (red crosses) and ‘L-mode’ (green circles)

regimes are indicated (from figure 4 in [30]). Temperature regimes consistent with the source terms

presented in this work and with experimental observations are highlighted in blue. Overlap with

the ‘H-mode’ regime calculated by equation (63) is restricted to a small region at small σ, not

comprising actual simulation runs. This region has been found experimentally to be characterized

by 3D dynamics [33].

strength used in the simulation to actual physical observables that could be experimentally

measured or estimated. This motivated in part the detailed investigation of the correct

formulation of source terms presented in this paper.

In [30], a normalized temperature source of the form

ŜT = Ŝ0

{
SUH exp

(
−(x− xUH)2

λ2
UH

)
+ SEC exp

(
−(x− xEC)2

λ2
EC

)}
(62)

was assumed, where SUH, xUH, λUH, SEC, xEC and λEC are geometry related parameters,

and Ŝ0 is a constant source strength, which was used as an independent variable in the

simulation setup. Reference [30] found empirically that the transition from ‘L-mode’ to
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‘H-mode’ occurs at
γ0

v′E×B

' 2∆3/2

χΛρs0R1/2

(
Te0

Te,max

)1/2

' 0.5, (63)

where γ0/v
′
E×B is the ratio between interchange growth rate and E×B shearing rate, R = 1

m is the major radius, ∆ ≡ 2πrBz/Bϕ is the field-line return distance used as an indepen-

dent variable, Λ ≡ 1
2
ln(mi/(2πme)) = 3, Te,max is the maximum time-average electron

temperature achieved in the simulation, and χ ' 2.5 is an empirical parameter related to

the maximum shear flow allowed by the Kelvin-Helmholtz instability. The normalization

factors were ρs0 = 5 mm and Te0 = 10.02 eV for a toroidal magnetic field of Bϕ = 0.076 T.

It is clear from (63), as well as from the structure of the equations, which involve terms pro-

portional to T
{0, 1/2, 1, 3/2, 2}
e , that the absolute temperature level is the determining factor in

the observed ‘L-H transition’, not the source strength Ŝ0, which was merely used to express

equation (63) in terms of the independent variables of the simulation setup. Using global

energy balance, reference [30] obtained

Te,max ' Te0

(
λeff Ŝ0

σ(2
3
ξxS + 4

9
LT )

)2/3

, (64)

where λeff ≡
√

π(SUHλUH + SECλEC) = 10
√

πρs0, σ ≡ ∆/(2πLv), Lv = 64ρs0 is the torus

height, xS = 36ρs0 is the effective source center, ξ ' 0.5 is a shaping factor, and LT is the

temperature gradient scale length in the exponential part of the profile. Note the different

meaning of the symbol σ in the notation of reference [30].

In figure 5, equation (64) is used to reconstruct the maximum electron temperatures in

physical units for the simulation runs in [30]. An unphysical rise of Te,max up to 250 eV is

observed as Ŝ0 is scanned. This is confirmed independently by the ‘H-mode’ example profile

in figure 1 in reference [30], from which Te,max ' 230 eV is deduced.

It is clear that this problem is related to the fact that the temperature source ST in the

simulation is not of the correct physical form given by equations (20) and (21), which, as we

have shown in this work, guarantees that the temperature stays within realistic boundaries.

We have also shown that ST cannot be a constant, especially when saturation of the tem-

perature source occurs at Te,max ∼ 2
3
〈E〉, in which case ST fluctuates around zero. Even in

cases where the simulation achieves realistic values of Te,max, the existence of a constant ST

in the equations is problematic, as it may drive spurious DC flows. Of course, it is difficult

to predict how exactly the simulation would behave with the source terms derived in this
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paper, but it seems plausible that the parameter regime of the ‘H-mode’ would be much

reduced or even eliminated, which would be consistent with the experimental observations

[33]. The strong role of the allegedly independent variable Ŝ0 would be replaced by a much

weaker role of the fast electron energy distribution, which remains to be estimated from first

principles or experimental data.

VI. SUMMARY AND CONCLUSIONS

We have derived expressions for particle, momentum and energy sources that are suitable

for direct implementation in fluid plasma simulation codes. It was shown that the interface

between atomic physics and plasma physics is completely described by three scalar functions

of the incident particle energy, namely the total cross section σ(E ′), the forward momentum

function κ(E ′) and the energy function ε(E ′), which are properties of the atomic physics

differential cross sections. The BEB and BED theories for electron-impact ionization were

used to capture the atomic physics of different gases in simple yet accurate analytical forms,

making the resulting source terms practical for use in fast-timescale turbulence codes. This

represents the first time that differential cross sections from atomic physics research have

been applied in plasma turbulence research. It was shown that this leads to the explana-

tion of the observations in basic plasma physics experiments regarding achievable electron

temperature regimes as well as density and temperature trends across different gases.

For applications aimed at the direct quantitative comparison with the experiment, it is

concluded that the self-consistent formulation of the sources and the correct atomic physical

description of the working gas is just as important as the correct description of sinks, such as

ion-mass dependent sheath losses. We recommend to use the source terms derived from the

BEB theory for all simulations of devices that are dominated by volume ionization sources,

which includes linear devices, simple magnetized tori, and torsatrons. Although a strong role

of the fast electron energy distribution F ′(E ′) is not expected, a better understanding of the

electron acceleration processes in the various plasma production schemes, such as helicon or

RF, would be desirable to improve the estimations of F ′(E ′) as a function of external control

parameters such as the neutral gas density and the injected power.
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