60 research outputs found

    Review on Comparison of AODV in MANET

    Get PDF
    In this revolutionary world mobile devices are very important for human being. Without mobile no one can fulfill their daily routines. For this scenario we study mobile ad-hoc network (MANET). In MANET mobile nodes communicate with each other using some wireless links without any infrastructure. Many routing protocols are needed for communication in such a network. There are many performance metrics to compare Ad hoc routing protocols. In this paper, there is comparison between two protocols AODV and AODVE (AODV with energy). In which average delay, packet delivery ratio, throughput measured respectively. This paper also provides a way that how to carry out such a comparative study, which could be used for future research

    DNA dependent protein kinase (DNA-PK) enhances HIV transcription by promoting RNA polymerase II activity and recruitment of transcription machinery at HIV LTR.

    Get PDF
    Despite reductions in mortality from the use of highly active antiretroviral therapy (HAART), the presence of latent or transcriptionally silent proviruses prevents HIV cure/eradication. We have previously reported that DNA-dependent protein kinase (DNA-PK) facilitates HIV transcription by interacting with the RNA polymerase II (RNAP II) complex recruited at HIV LTR. In this study, using different cell lines and peripheral blood mononuclear cells (PBMCs) of HIV-infected patients, we found that DNA-PK stimulates HIV transcription at several stages, including initiation, pause-release and elongation. We are reporting for the first time that DNA-PK increases phosphorylation of RNAP II C-terminal domain (CTD) at serine 5 (Ser5) and serine 2 (Ser2) by directly catalyzing phosphorylation and by augmenting the recruitment of the positive transcription elongation factor (P-TEFb) at HIV LTR. Our findings suggest that DNA-PK expedites the establishment of euchromatin structure at HIV LTR. DNA-PK inhibition/knockdown leads to the severe impairment of HIV replication and reactivation of latent HIV provirus. DNA-PK promotes the recruitment of Tripartite motif-containing 28 (TRIM28) at LTR and assists the release of paused RNAP II through TRIM28 phosphorylation. These results provide the mechanisms through which DNA-PK controls the HIV gene expression and, likely, can be extended to cellular gene expression, including during cell malignancy, where the role of DNA-PK has been well-established

    Acidic Nanoparticles Are Trafficked to Lysosomes and Restore an Acidic Lysosomal pH and Degradative Function to Compromised ARPE-19 Cells

    Get PDF
    Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity. © 2012 Baltazar et al

    Acidic Nanoparticles Are Trafficked to Lysosomes and Restore an Acidic Lysosomal pH and Degradative Function to Compromised ARPE-19 Cells

    Get PDF
    Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity

    Plasma Waves and Rayleigh–Taylor Instability: Theory and Application

    Get PDF
    The presence of plasma density gradient is one of the main sources of Rayleigh–Taylor instability (RTI). The Rayleigh–Taylor instability has application in meteorology to explain cloud formations and in astrophysics to explain finger formation. It has wide applications in the inertial confinement fusion to determine the yield of the reaction. The aim of the chapter is to discuss the current status of the research related to RTI. The current research related to RTI has been reviewed, and general dispersion relation has been derived under the thermal motion of electron. The perturbed densities of ions and electrons are determined using two fluid approach under the small amplitude of oscillations. The dispersion equation is derived with the help of Poisson’s equation and solved numerically to investigate the effect of various parameters on the growth rate and real frequency. It has been shown that the real frequency increases with plasma density gradient, electron temperature and the wavenumber, but magnetic field has opposite effect on it. On the other hand, the growth rate of instability increases with magnetic field and density gradient, but it decreases with electron temperature and wave number

    Radiation mitigating properties of the lignan component in flaxseed

    Get PDF
    BACKGROUND: Wholegrain flaxseed (FS), and its lignan component (FLC) consisting mainly of secoisolariciresinol diglucoside (SDG), have potent lung radioprotective properties while not abrogating the efficacy of radiotherapy. However, while the whole grain was recently shown to also have potent mitigating properties in a thoracic radiation pneumonopathy model, the bioactive component in the grain responsible for the mitigation of lung damage was never identified. Lungs may be exposed to radiation therapeutically for thoracic malignancies or incidentally following detonation of a radiological dispersion device. This could potentially lead to pulmonary inflammation, oxidative tissue injury, and fibrosis. This study aimed to evaluate the radiation mitigating effects of FLC in a mouse model of radiation pneumonopathy. METHODS: We evaluated FLC-supplemented diets containing SDG lignan levels comparable to those in 10% and 20% whole grain diets. 10% or 20% FLC diets as compared to an isocaloric control diet (0% FLC) were given to mice (C57/BL6) (n=15-30 mice/group) at 24, 48, or 72-hours after single-dose (13.5 Gy) thoracic x-ray treatment (XRT). Mice were evaluated 4 months post-XRT for blood oxygenation, lung inflammation, fibrosis, cytokine and oxidative damage levels, and survival. RESULTS: FLC significantly mitigated radiation-related animal death. Specifically, mice fed 0% FLC demonstrated 36.7% survival 4 months post-XRT compared to 60–73.3% survival in mice fed 10%-20% FLC initiated 24–72 hours post-XRT. FLC also mitigated radiation-induced lung fibrosis whereby 10% FLC initiated 24-hours post-XRT significantly decreased fibrosis as compared to mice fed control diet while the corresponding TGF-beta1 levels detected immunohistochemically were also decreased. Additionally, 10-20% FLC initiated at any time point post radiation exposure, mitigated radiation-induced lung injury evidenced by decreased bronchoalveolar lavage (BAL) protein and inflammatory cytokine/chemokine release at 16 weeks post-XRT. Importantly, neutrophilic and overall inflammatory cell infiltrate in airways and levels of nitrotyrosine and malondialdehyde (protein and lipid oxidation, respectively) were also mitigated by the lignan diet. CONCLUSIONS: Dietary FLC given early post-XRT mitigated radiation effects by decreasing inflammation, lung injury and eventual fibrosis while improving survival. FLC may be a useful agent, mitigating adverse effects of radiation in individuals exposed to incidental radiation, inhaled radioisotopes or even after the initiation of radiation therapy to treat malignancy

    CBF-1 Promotes the Establishment and Maintenance of HIV Latency by Recruiting Polycomb Repressive Complexes, PRC1 and PRC2, at HIV LTR.

    Get PDF
    The C-promoter binding factor-1 (CBF-1) is a potent and specific inhibitor of the human immunodeficiency virus (HIV)-1 LTR promoter. Here, we demonstrate that the knockdown of endogenous CBF-1 in latently infected primary CD4+ T cells, using specific small hairpin RNAs (shRNA), resulted in the reactivation of latent HIV proviruses. Chromatin immunoprecipitation (ChIP) assays using latently infected primary T cells and Jurkat T-cell lines demonstrated that CBF-1 induces the establishment and maintenance of HIV latency by recruiting polycomb group (PcG/PRC) corepressor complexes or polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Knockdown of CBF-1 resulted in the dissociation of PRCs corepressor complexes enhancing the recruitment of RNA polymerase II (RNAP II) at HIV LTR. Knockdown of certain components of PRC1 and PRC2 also led to the reactivation of latent proviruses. Similarly, the treatment of latently infected primary CD4+ T cells with the PRC2/EZH2 inhibitor, 3-deazaneplanocin A (DZNep), led to their reactivation

    Pharmacological Stimulation of Edar Signaling in the Adult Enhances Sebaceous Gland Size and Function

    Get PDF
    Impaired ectodysplasin A (EDA) receptor (EDAR) signaling affects ectodermally derived structures including teeth, hair follicles, and cutaneous glands. The X-linked hypohidrotic ectodermal dysplasia (XLHED), resulting from EDA deficiency, can be rescued with lifelong benefits in animal models by stimulation of ectodermal appendage development with EDAR agonists. Treatments initiated later in the developmental period restore progressively fewer of the affected structures. It is unknown whether EDAR stimulation in adults with XLHED might have beneficial effects. In adult Eda mutant mice treated for several weeks with agonist anti-EDAR antibodies, we find that sebaceous gland size and function can be restored to wild-type levels. This effect is maintained upon chronic treatment but reverses slowly upon cessation of treatment. Sebaceous glands in all skin regions respond to treatment, although to varying degrees, and this is accompanied in both Eda mutant and wild-type mice by sebum secretion to levels higher than those observed in untreated controls. Edar is expressed at the periphery of the glands, suggesting a direct homeostatic effect of Edar stimulation on the sebaceous gland. Sebaceous gland size and sebum production may serve as biomarkers for EDAR stimulation, and EDAR agonists may improve skin dryness and eczema frequently observed in XLHED

    Not Available

    No full text
    Not AvailableThe effect of dietary supplementation of coriander seed powder on egg cholesterol, serum lipid profile, and caecal microbiology in laying quailsNot Availabl

    Not Available

    No full text
    Not AvailableEffect of dietary inclusion of fenugreek (Trigonella foenum-graecum L.) and black cumin (Nigella sativa L.) on performance, egg quality traits and eggNot Availabl
    corecore