336 research outputs found

    Molecular and functional heterogeneity of GABAergic synapses

    Get PDF
    Knowledge of the functional organization of the GABAergic system, the main inhibitory neurotransmitter system, in the CNS has increased remarkably in recent years. In particular, substantial progress has been made in elucidating the molecular mechanisms underlying the formation and plasticity of GABAergic synapses. Evidence available ascribes a key role to the cytoplasmic protein gephyrin to form a postsynaptic scaffold anchoring GABAA receptors along with other transmembrane proteins and signaling molecules in the postsynaptic density. However, the mechanisms of gephyrin scaffolding remain elusive, notably because gephyrin can auto-aggregate spontaneously and lacks PDZ protein interaction domains found in a majority of scaffolding proteins. In addition, the structural diversity of GABAA receptors, which are pentameric channels encoded by a large family of subunits, has been largely overlooked in these studies. Finally, the role of the dystrophin-glycoprotein complex, present in a subset of GABAergic synapses in cortical structures, remains ill-defined. In this review, we discuss recent results derived mainly from the analysis of mutant mice lacking a specific GABAA receptor subtype or a core protein of the GABAergic postsynaptic density (neuroligin-2, collybistin), highlighting the molecular diversity of GABAergic synapses and its relevance for brain plasticity and function. In addition, we discuss the contribution of the dystrophin-glycoprotein complex to the molecular and functional heterogeneity of GABAergic synapse

    Extracellular matrix: a new player in memory maintenance and psychiatric disorders

    Get PDF
    How the brain performs higher cognitive functions such as learning and memory is traditionally studied by investigating how neurons work. However, over the past two decades, evidence has accumulated which suggests that components of the extracellular matrix contribute to the storing of information through learning processes. Thus, matrix regulation – either changes in the protein composition of the perineural network surrounding neurons or cleavage of this network by specific metalloproteases – could be relevant to the many psychiatric disorders that are shaped by previous experiences, i.e. by learning and plasticity. This includes disorders which are a direct consequence of past experiences and ones where previous experiences constitute a risk factor. Psychotherapy is one of the first-line treatments for most psychiatric conditions, and involves learning and plasticity. Here, we review selected publications pertaining to experience dependence in psychiatric conditions and summarise evidence of roles for the extracellular matrix in learning and memory. We then suggest how control of the extracellular matrix could be leveraged for innovative treatments and, more generally, discuss possible aetiological effects of extracellular matrix alterations in psychiatric disorders

    A DARPin-based molecular toolset to probe gephyrin and inhibitory synapse biology

    Full text link
    Neuroscience currently requires the use of antibodies to study synaptic proteins, where antibody binding is used as a correlate to define the presence, plasticity, and regulation of synapses. Gephyrin is an inhibitory synaptic scaffolding protein used to mark GABAergic and glycinergic postsynaptic sites. Despite the importance of gephyrin in modulating inhibitory transmission, its study is currently limited by the tractability of available reagents. Designed Ankyrin Repeat Proteins (DARPins) are a class of synthetic protein binder derived from diverse libraries by in vitro selection, and tested by high-throughput screening to produce specific binders. In order to generate a functionally diverse toolset for studying inhibitory synapses, we screened a DARPin library against gephyrin mutants representing both phosphorylated and dephosphorylated states. We validated the robust use of anti-gephyrin DARPin clones for morphological identification of gephyrin clusters in rat neuron culture and mouse brain tissue, discovering previously overlooked clusters. This DARPin-based toolset includes clones with heterogenous gephyrin binding modes that allowed for identification of the most extensive gephyrin interactome to date, and defined novel classes of putative interactors, creating a framework for understanding gephyrin's non-synaptic functions. This study demonstrates anti-gephyrin DARPins as a versatile platform for studying inhibitory synapses in an unprecedented manner

    Threat memory reminder under matrix metalloproteinase 9 inhibitor doxycycline globally reduces subsequent memory plasticity

    Full text link
    Associative memory can be rendered malleable by a reminder. Blocking the ensuing re-consolidation process is suggested as a therapeutic target for unwanted aversive memories. Matrix metalloproteinase (MMP)-9 is required for structural synapse remodelling involved in memory consolidation. Inhibiting MMP-9 with doxycycline is suggested to attenuate human threat conditioning. Here, we investigate whether MMP-9 inhibition also interferes with threat memory re-consolidation. N=78 male and female human participants learned the association between two visual conditioned stimuli (CS+) and a 50% chance of an unconditioned nociceptive stimulus (US), and between CS- and the absence of US. On day 7, one CS+ was reminded without reinforcement 3.5 hours after ingesting either 200 mg doxycycline, or placebo. On day 14, retention of CS memory was assessed under extinction, by fear-potentiated startle. Contrary to our expectations, we observed a greater CS+/CS- difference in participants who were reminded under doxycycline, compared to placebo. Participants who were reminded under placebo showed extinction learning during the retention test, which was not observed in the doxycycline group. There was no difference between the reminded and the non-reminded CS+ in either group. In contrast, during re-learning after the retention test, CS+/CS- difference was more pronounced in the placebo than the doxycycline group. To summarize, a single dose of doxycycline appeared to have no specific impact on re-consolidation, but to globally impair extinction learning, and threat re-learning, after drug clearance.MMP-9 inhibition appears to attenuate memory consolidation. It could also be a target for blocking reconsolidation. Here, we test this hypothesis in human threat conditioning. We find that doxycycline has no specific impact on a reminded cue, but confers a global reduction in extinction learning and threat learning beyond the clearance of the drug. This may point towards a more long-lasting impact of doxycycline treatment on memory plasticity

    GABAergic Synaptogenesis: A Case for Cooperation

    Full text link
    Multiple cell-adhesion molecules contribute to synapse formation by mediating trans-synaptic interactions with presynaptic signaling molecules. In this issue of Neuron, Li et al. (2017) report cooperativity between Neuroligin2 and Slitrk3, exerting distinct effects on GABAergic synapse formation in immature and mature neurons

    Suprachiasmatic to paraventricular nuclei interaction generates normal food searching rhythms in mice

    Full text link
    Searching for food follows a well-organized decision process in mammals to take up food only if necessary. Moreover, scavenging is preferred during their activity phase. Various time-dependent regulatory processes have been identified originating from the suprachiasmatic nuclei (SCN), which convert external light information into synchronizing output signals. However, a direct impact of the SCN on the timing of normal food searching has not yet been found. Here, we revisited the function of the SCN to affect when mice look for food. We found that this process was independent of light but modified by the palatability of the food source. Surprisingly, reducing the output from the SCN, in particular from the vasopressin releasing neurons, reduced the amount of scavenging during the early activity phase. The SCN appeared to transmit a signal to the paraventricular nuclei (PVN) via GABA receptor A1. Finally, the interaction of SCN and PVN was verified by retrograde transport-mediated complementation. None of the genetic manipulations affected the uptake of more palatable food. The data indicate that the PVN are sufficient to produce blunted food searching rhythms and are responsive to hedonistic feeding. Nevertheless, the search for normal food during the early activity phase is significantly enhanced by the SCN

    Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold

    Full text link
    Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen-glucose deprivation as an in vitro model for ischemia, we show that BDNF-tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation

    The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep

    Full text link
    Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day-dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles
    • …
    corecore