1,654 research outputs found
The Effect of Small Class Sizes on Mortality Through Age 29 Years: Evidence From a Multicenter Randomized Controlled Trial
Limiting the number of students per classroom in the early years has been shown to improve educational outcomes. Improved education is, in turn, hypothesized to improve health. The authors examined whether smaller class sizes affect mortality through age 29 years and whether cognitive factors play a role. They used data from the Project Student Teacher Achievement Ratio, a 4-year multicenter randomized controlled trial of reduced class sizes in Tennessee involving 11,601 students between 1985 and 1989. Children randomized to small classes (13ā17 students) experienced improved measures of cognition and academic performance relative to those assigned to regular classes (22ā25 students). As expected, these cognitive measures were significantly inversely associated with mortality rates (P < 0.05). However, through age 29 years, students randomized to small class size nevertheless experienced higher mortality rates than those randomized to regular size classes (hazard ratio (HR) = 1.58, 95% confidence interval (CI): 1.07, 2.32). The groups at risk included males (HR = 1.73, 95% CI: 1.05, 2.85), whites/Asians (HR = 1.68, 95% CI: 1.04, 2.72), and higher income students (HR = 2.20, 95% CI: 1.06, 4.57). The authors speculate that small classes might produce behavior changes that increase mortality through young adulthood that are stronger than the protective effects of enhanced cognition
Handgrip Peak Force and Rate of Force Development Measurements: Are They Reliable and Do They Correlate with Vertical Jump Power?
Handgrip peak force and rate of force development (RFD) measurements have been shown to be effective parameters at characterizing the strength capacities of numerous muscle groups, including those of the lower extremities. However, the reliability of these measurements and their relationship with vertical jump (VJ) peak power remains uncertain. PURPOSE: The purpose of this study was to examine the reliability of handgrip peak force and RFD measurements. A secondary aim was to determine if these measurements are correlated with the peak power produced during a VJ test. METHODS: Twenty young, healthy women (age = 21 Ā± 3 years) volunteered for this study. Participants reported for testing on two different occasions, separated by 2-7 days at approximately the same time of day (Ā± 2 hours). For each testing session, participants completed three VJs followed by three handgrip maximal voluntary contraction (MVC) assessments with the dominant hand. VJs were performed using a linear velocity transducer that was attached to the posterior portion of a belt fastened around the participantsā waistline. For all VJs, participants were instructed to jump up as explosively as possible with both feet at the same time and land on the floor in the starting position. Prior to the VJ assessments, each participant\u27s body mass was entered into the linear velocity transducer microcomputer. Estimated peak power output was calculated in watts (W) and displayed by the microcomputer at the conclusion of each jump. Handgrip MVCs were performed using a novel strength testing device. This device consisted of a microcomputer and a load cell that was equipped with two semi-cylindrical handles for gripping. For each MVC, participants sat in an upright position and were instructed to squeeze the handles of the load cell āas hard and fast as possibleā for 3-4 seconds. Handgrip peak force, peak RFD, and RFD at 0-100 (RFD100) and 0-200 (RFD200) milliseconds from contraction onset were calculated and displayed by the device at the conclusion of each assessment. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were calculated between sessions to assess the reliability of handgrip peak force and RFD variables. The relationships between these variables and VJ peak power were determined by Pearson correlation coefficients (r). RESULTS: Handgrip peak force, peak RFD, RFD100, and RFD200 were highly consistent between sessions, with ICCs ranging between 0.89 and 0.92 and CV values between 4.9 and 6.4%. There were significant correlations between VJ peak power and handgrip peak force (r = 0.612, P = 0.004), peak RFD (r = 0.731, P \u3c 0.001), RFD100 (r = 0.671, P = 0.001), and RFD200 (r = 0.701, P = 0.001). CONCLUSION: The results of this study showed that peak force, peak RFD, RFD100, and RFD200 were reliable measures for assessing handgrip strength in young, healthy adults. These measurements were significantly correlated with VJ peak power and thus, could be effective parameters at predicting lower-body explosiveness. The predictive capacity of such parameters to determine a personās peak power may be important in the early stages of rehabilitation, especially if that person is unable to perform a VJ test
Age-related Differences in Handgrip Strength Characteristics and Vertical Jump Performance
Handgrip strength characteristics, such as peak force and rate of force development (RFD), have been shown to be significantly associated with the performance capacities of the lower-body musculature. Declines in lower-body performance are commonly reported as a consequence of aging. However, few studies have investigated the influence of age on handgrip peak force and RFD. PURPOSE: The purpose of this study was to examine age-related differences in handgrip peak force and RFD between young and older women and the relationships of these characteristics with lower-body performance during a vertical jump (VJ) test. METHODS: Twenty young (age = 21 Ā± 3 years) and twenty older (67 Ā± 5 years) healthy women completed three VJs followed by three handgrip maximal voluntary contraction (MVC) assessments with the dominant hand. All VJs were performed on a jump mat. The jump mat assessed lower-body performance by measuring VJ height (cm). Handgrip MVCs were performed using a novel strength testing device. This device consisted of a microcomputer and a load cell that was equipped with two semi-cylindrical handles for gripping. For each MVC, participants sat in an upright position and were instructed to squeeze the handles of the load cell āas hard and fast as possibleā for 3-4 seconds. Handgrip peak force, peak RFD, and RFD at 0-100 (RFD100) and 0-200 (RFD200) milliseconds from contraction onset were calculated and displayed by the device at the conclusion of each MVC and were normalized to body mass. Independent samples t-tests were used to compare VJ height and handgrip peak force and RFD characteristics between the young and older women. Pearson correlation coefficients (r) were calculated separately for the young and older women to examine the relationships between VJ height and handgrip peak force and RFD. RESULTS: The older women exhibited significantly lower VJ height (older = 20.3 Ā± 3.8 cm; young = 34.4 Ā± 5.9 cm; P \u3c 0.001), peak force (older = 2.4 Ā± 0.4 NĀ·kg-1; young = 2.7 Ā± 0.5 NĀ·kg-1; P = 0.028), peak RFD (older = 13.6 Ā± 2.6 NĀ·s-1Ā·kg-1; young = 16.4 Ā± 2.9 NĀ·s-1Ā·kg-1; P = 0.003), RFD100 (older = 13.2 Ā± 3.0 NĀ·s-1Ā·kg-1; young = 15.7 Ā± 3.3 NĀ·s-1Ā·kg-1; P = 0.016), and RFD200 (older = 9.3 Ā± 1.6 NĀ·s-1Ā·kg-1; young = 10.8 Ā± 1.6 NĀ·s-1Ā·kg-1; P = 0.003) than the younger women. Positive correlations were observed between VJ height and handgrip RFD200 (r = 0.502, P = 0.024) and peak RFD (r = 0.453, P = 0.045) for the younger women. Positive correlations were also observed between VJ height and handgrip RFD200 (r = 0.446, P = 0.049) and peak RFD (r = 0.408, P = 0.074) for the older women, although the latter correlation did not reach statistical significance. There were no significant correlations between VJ height and handgrip peak force (young: r = 0.389, P = 0.090; older: r = 0.311, P = 0.183) or RFD100 (young: r = 0.366, P = 0.113; older: r = 0.382, P = 0.096) for either age group. CONCLUSION: These findings demonstrated that VJ height and handgrip peak force and RFD characteristics decrease in old age. The significant correlations observed between VJ height and RFD200 in the young and older women suggest that handgrip rapid strength (0-200 milliseconds) may be an effective predictor of oneās jumping ability
Reliability and Relationships between Supine Medicine Ball Throw Kinetics and Vertical Jump Height
Supine medicine ball throw (SMBT) assessments have been used previously to evaluate upper-body explosive strength in young adults. Kinetic variables, such as peak force and rate of force development (RFD), can be measured during a SMBT. These variables have been suggested to be important predictors of athletic performance capacities. However, limited data exist regarding the reliability of SMBT peak force and RFD measurements and how they associate with performance during a vertical jump (VJ) test. PURPOSE: The purpose of this study was to examine the reliability of SMBT variables and their relationship with VJ height. METHODS: Twenty young, healthy women (age = 21 Ā± 3 years) volunteered for this study. Participants reported for testing on two different occasions, separated by 2-7 days at approximately the same time of day (Ā± 2 hours). For each testing session, participants completed three VJs followed by three SMBT assessments. All VJs were performed on a jump mat. The jump mat measured VJ height (cm) based on flight time. For the SMBTs, participants laid on a force plate in the supine position with their hands on the ball (2.7 kg) and knees and hips flexed at 90Āŗ. Participants were instructed to throw the ball explosively upward with as much force as possible, using a motion similar to a basketball chest pass. The vertical force signal (N) from the force plate was recorded during each throw and used to measure peak force and RFD variables. Peak force was calculated as the highest force value. RFDmax was calculated as the highest slope for any 20 ms epoch that occurred over the rising portion of the force signal. RFD30% and RFD40-80% were calculated as the linear slope of the force signal from the onset of the throw to 30% peak force and from 40% to 80% peak force, respectively. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were calculated between sessions to assess the reliability of SMBT peak force and RFD variables. The relationships between these variables and VJ height were assessed by Pearson correlation coefficients (r). RESULTS: The ICC for SMBT RFD30% was 0.55. This ICC was considerably lower than the ICCs for the other SMBT variables (0.82-0.88). The CV value for SMBT RFD30% was 27.2%, whereas the CV values for SMBT peak force, RFDmax, and RFD40-80% were all less than or equal to 14.0%. There were significant relationships between VJ height and SMBT peak force (r = 0.483, P = 0.031), RFDmax (r = 0.484, P = 0.031), and RFD40-80% (r = 0.491, P = 0.028); however, there was no significant relationship between VJ height and RFD30% (r = 0.359, P = 0.120). CONCLUSION: The results of this study demonstrated that SMBT peak force, RFDmax, and RFD40-80% were reliable measures for assessing upper-body explosive strength in young, healthy adults. These measurements were significantly associated with VJ height and therefore, may be effective parameters at predicting a personās jumping ability and overall athletic performance potential. RFD30% was unreliable and not significantly correlated with VJ height. As a result, this variable should not be used as a performance measure when conducting SMBT assessments
Statistically Motivated Second Order Pooling
Second-order pooling, a.k.a.~bilinear pooling, has proven effective for deep
learning based visual recognition. However, the resulting second-order networks
yield a final representation that is orders of magnitude larger than that of
standard, first-order ones, making them memory-intensive and cumbersome to
deploy. Here, we introduce a general, parametric compression strategy that can
produce more compact representations than existing compression techniques, yet
outperform both compressed and uncompressed second-order models. Our approach
is motivated by a statistical analysis of the network's activations, relying on
operations that lead to a Gaussian-distributed final representation, as
inherently used by first-order deep networks. As evidenced by our experiments,
this lets us outperform the state-of-the-art first-order and second-order
models on several benchmark recognition datasets.Comment: Accepted to ECCV 2018. Camera ready version. 14 page, 5 figures, 3
table
On commensurable hyperbolic Coxeter groups
For Coxeter groups acting non-cocompactly but with finite covolume on real hyperbolic space Hn, new methods are presented to distinguish them up to (wide) commensurability. We exploit these ideas and determine the commensurability classes of all hyperbolic Coxeter groups whose fundamental polyhedra are pyramids over a product of two simplices of positive dimensions
The fate of steroid estrogens: Partitioning during wastewater treatment and onto river sediments
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Springer Science+Business Media B.V.The partitioning of steroid estrogens in wastewater treatment and receiving waters is likely to influence their discharge to, and persistence in, the environment. This study investigated the partitioning behaviour of steroid estrogens in both laboratory and field studies. Partitioning onto activated sludge from laboratory-scale Husmann units was rapid with equilibrium achieved after 1 h. Sorption isotherms and Kd values decreased in the order 17Ī±-ethinyl estradiol > 17Ī±-estradiol > estrone > estriol without a sorption limit being achieved (1/nā>1). Samples from a wastewater treatment works indicated no accumulation of steroid estrogens in solids from primary or secondary biological treatment, however, a range of steroid estrogens were identified in sediment samples from the River Thames. This would indicate that partitioning in the environment may play a role in the long-term fate of estrogens, with an indication that they will be recalcitrant in anaerobic conditions.EPSR
Risk of Buruli Ulcer and Detection of Mycobacterium ulcerans in Mosquitoes in Southeastern Australia
Buruli ulcer (BU) is a destructive skin condition caused by infection with the environmental bacterium, Mycobacterium ulcerans. BU has been reported in more than 30 countries in Africa, the Americas, Asia and the Western Pacific. How people become infected with M. ulcerans is not completely understood, but numerous studies have explored the role of biting insects. In 2007, it was discovered that M. ulcerans could be detected in association with mosquitoes trapped in one town in southeastern Australia during a large outbreak of BU. In the present study we investigated whether there was a relationship between the incidence of BU in humans in several towns and the likelihood of detecting M. ulcerans in mosquitoes trapped in those locations. We found a strong association between the proportion of M. ulcerans-positive mosquitoes and the incidence of human disease. The results of this study strengthen the hypothesis that mosquitoes are involved in the transmission of M. ulcerans in southeastern Australia. This has implications for the development of strategies to control and prevent BU
Author Correction: A consensus-based transparency checklist.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
- ā¦