72 research outputs found

    Chemical characteristics of ice residual nuclei in anvil cirrus clouds: evidence for homogeneous and heterogeneous ice formation

    No full text
    International audienceA counterflow virtual impactor was used to collect and analyze residual particles from anvil cirrus clouds generated over the state of Florida in the southern United States. A wide variety of particle types were found, including salts, crustal material, industrial metals, carbonaceous particles, and sulfates. Ambient aerosol particles near the anvils were found to have similar compositions, indicating that anvils act to redistribute particles over large regions of the atmosphere. Sampling occurred at a range of altitudes spanning temperatures from ?21 to ?56°C. More insoluble (crustal and metallic) particles typical of heterogeneous ice nuclei were found in ice crystals at warmer temperatures, while more soluble salts and sulfates were present at cold temperatures. At temperatures below about ?35 to ?40°C, soluble nuclei outnumbered insoluble nuclei, reflecting the transition from primarily heterogeneous to primarily homogeneous freezing as a source of anvil ice

    Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    Get PDF
    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes

    Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud

    Get PDF
    The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case
    corecore