19 research outputs found

    Linking human impacts to community processes in terrestrial and freshwater ecosystems

    Full text link
    Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems

    Linking human impacts to community processes in terrestrial and freshwater ecosystems.

    Get PDF
    Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems

    merged_insects_DRYAD

    No full text
    nest and insect abundance data for analysi

    longTermInsectAnalysis_DRYAD

    No full text
    rMarkdown file for the supplemental materials and the analysi

    Data from: Aquatic insects rich in omega-3 fatty acids drive breeding success in a widespread bird

    No full text
    Ecologists studying bird foraging ecology have generally focused on food quantity over quality. Emerging work suggests that food quality, in terms of highly unsaturated omega-3 fatty acids (HUFA), can have equally important effects on performance. HUFA, which are present in aquatic primary producers, are all but absent in vascular plants, and HUFA content is also correspondingly higher in aquatic insects. Here, we show that Tree Swallow (Tachycineta bicolor) chicks rapidly accumulate HUFA from food during the nestling period. Using data sampled over 24 years, we also show that Tree Swallow breeding success is positively associated with the availability of HUFA-rich aquatic insects. Variation in aquatic insect biomass during chick development was a strong predictor of fledging success, while variation in terrestrial insects had little effect on fledging success. Our results highlight the potential for nutritional mismatches between insectivores and high-quality prey to affect avian reproductive performance

    Nutrient loading by anadromous fishes: species-specific contributions and the effects of diversity

    No full text
    Anadromous fishes exhibit diverse life history and functional traits. Spawning anadromous fishes bring nutrients to freshwaters and their life history and functional traits can influence nutrient loading patterns. Past studies have overwhelmingly focused on Pacific salmons, which are typically semelparous and large-bodied, traits resulting in a large net flow of nutrients from marine to freshwater ecosystems. We asked how nutrient inputs varied across twelve species of North American anadromous fishes and how these patterns affected river-wide trends in nutrient loading. We used portfolio effect analyses to assess whether diversity stabilized or destabilized nutrient inputs to freshwater ecosystems over time. Recent decreases in body size reduced per individual nutrient loading for several key species, which in turn decreased cumulative loading. Results show that diversity does not significantly increase the stability of nutrient inputs to freshwaters. Counter to expectations, species loss in the Connecticut River increased stability, while species gain in the Columbia River decreased stability. We hypothesize that these changes occurred because the dominant nutrient loading species in both systems were synchronous in their population dynamics.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A songbird adjusts its heart rate and body temperature in response to season and fluctuating daily conditions

    No full text
    In a seasonal world, organisms are continuously adjusting physiological processes relative to local environmental conditions. Owing to their limited heat and fat storage capacities, small animals, such as songbirds, must rapidly modulate their metabolism in response to weather extremes and changing seasons to ensure survival. As a consequence of previous technical limitations, most of our existing knowledge about how animals respond to changing environmental conditions comes from laboratory studies or field studies over short temporal scales. Here, we expanded beyond previous studies by outfitting 71 free-ranging Eurasian blackbirds (Turdus merula) with novel heart rate and body temperature loggers coupled with radio transmitters, and followed individuals in the wild from autumn to spring. Across seasons, blackbirds thermoconformed at night, i.e. their body temperature decreased with decreasing ambient temperature, but not so during daytime. By contrast, during all seasons blackbirds increased their heart rate when ambient temperatures became colder. However, the temperature setpoint at which heart rate was increased differed between seasons and between day and night. In our study, blackbirds showed an overall seasonal reduction in mean heart rate of 108 beats min-1 (21%) as well as a 1.2°C decrease in nighttime body temperature. Episodes of hypometabolism during cold periods likely allow the birds to save energy and, thus, help offset the increased energetic costs during the winter when also confronted with lower resource availability. Our data highlight that, similar to larger non-hibernating mammals and birds, small passerine birds such as Eurasian blackbirds not only adjust their heart rate and body temperature on daily timescales, but also exhibit pronounced seasonal changes in both that are modulated by local environmental conditions such as temperature. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.publishe

    Twining et al 2019 Fun Ecol_data supplement

    No full text
    Raw bulk stable isotope data, compound-specific stable isotope data, fatty acid data, and growth rate dat

    Data from: Highly unsaturated fatty acids in nature: what we know and what we need to learn

    No full text
    The supply and demand of omega-3 highly unsaturated fatty acids (ω-3 HUFA) in natural ecosystems may lead to resource limitation in a diverse array of animal taxa. Here, we review why food quality in terms of ω-3 HUFAs is important, particularly for neural tissue, across a diversity of animal taxa ranging from invertebrate zooplankton to vertebrates (including humans). Our review is focused on ω-3 HUFAs rather than other unsaturated fatty acids because these compounds are especially important biochemically, but scarce in nature. We discuss the dichotomy between ω-3 HUFA availability between aquatic primary producers, which are often rich in these compounds, and terrestrial primary producers, which are contain little to none of them. We describe the use of fatty acids as qualitative and quantitative tracers for reconstructing animal diets in natural ecosystems. Next, we discuss both direct and indirect ecological implications of ω-3 HUFA limitation at the individual, population, food web, and ecosystem scales, which include: changes in behavior, species composition, secondary production rates, trophic transfer efficiency, and cross-ecosystem subsidies. We finish by highlighting future research priorities including a need for more research on ω-3 HUFAs in terrestrial systems, more research their importance for higher order consumers, and more research on the food web and ecosystem-scale effects of ω-3 HUFA limitation

    Taxonomic composition and lake bathymetry influence fatty acid export via emergent insects

    No full text
    1. The ecological role of emergent aquatic insects from lakes in exporting dietary polyunsaturated fatty acids (PUFA) across the freshwater-land interface is still poorly understood.2. In this field study, we explored the seasonal biomass export of emergent insects from three subalpine lakes and investigated how lipids of emergent insects were related to lake bathymetry, lipids of organic matter in lake sediments (i.e., basal resources), and the taxonomic composition of insects.3. The total lipid and PUFA fluxes of emergent insects were strongly related to taxonomy and lake bathymetry, but weakly associated with the PUFA content of the uppermost lake sediment layers. PUFA flux estimates of the dominant taxon, Chironomidae, from the shallowest lake (3 m depth; 125 g PUFA m−2 season−1) were considerably higher than those from the deepest lake (33 m depth; 56 g PUFA m−2 season−1), due to the higher per area biomass of emergent insects from this shallow lake. Insect taxonomy also affected the composition of PUFA transfer to land: Chironomidae were richer in ω-6 PUFA, such as linoleic acid (18:2n-6) and arachidonic acid (20:4n-6), whereas Ephemeroptera and Trichoptera contained more ω-3 PUFA, especially α-linolenic acid (18:3n-3) and eicosapentaenoic acid (20:5n-3).4. Our findings suggest that taxon-specific differences in PUFA content and lake bathymetry jointly shape PUFA fluxes and thus the provisioning of emergent insects as dietary sources of physiologically important PUFA for riparian consumers.publishe
    corecore