248 research outputs found

    The Intrinsic Magnetization of Antiferromagnetic Textures

    Full text link
    Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.Comment: 12 pages, 7 figure

    Staggered Dynamics in Antiferromagnets by Collective Coordinates

    Get PDF
    Antiferromagnets can be used to store and manipulate spin information, but the coupled dynamics of the staggered field and the magnetization are very complex. We present a theory which is conceptually much simpler and which uses collective coordinates to describe staggered field dynamics in antiferromagnetic textures. The theory includes effects from dissipation, external magnetic fields, as well as reactive and dissipative current-induced torques. We conclude that, at low frequencies and amplitudes, currents induce collective motion by means of dissipative rather than reactive torques. The dynamics of a one-dimensional domain wall, pinned at 90^{\circ} at its ends, are described as a driven harmonic oscillator with a natural frequency inversely proportional to the length of the texture.Comment: 4 pages, 2 figure

    Magnetic susceptibility of vanadium carbide

    Get PDF
    Magnetic susceptibility of vanadium carbide from 77 to 300 K measured by magnetomete

    Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum

    Full text link
    Statistical γ\gamma-decay from highly excited states is determined by the nuclear level density (NLD) and the γ\gamma-ray strength function (γ\gammaSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γ\gammaSF to evaluate the γ\gamma-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.Comment: CGS16, Shanghai 2017, Proceedings, 5 pages, 3 figure

    Scissors resonance in the quasi-continuum of Th, Pa and U isotopes

    Full text link
    The gamma-ray strength function in the quasi-continuum has been measured for 231-233Th, 232,233Pa and 237-239U using the Oslo method. All eight nuclei show a pronounced increase in gamma strength at omega_SR approx 2.4 MeV, which is interpreted as the low-energy M1 scissors resonance (SR). The total strength is found to be B_SR = 9-11 mu_N^2 when integrated over the 1 - 4 MeV gamma-energy region. The SR displays a double-hump structure that is theoretically not understood. Our results are compared with data from (gamma, gamma') experiments and theoretical sum-rule estimates for a nuclear rigid-body moment of inertia.Comment: 11 pages, 9 figure
    corecore