2,044 research outputs found
Numerical modelling in non linear fracture mechanics
Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence,and a model for intergranular creep failure with diffusive growth of grain boundary cavities leadingto micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damagemechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesivezone models to represent the fracture process is discussed
Micromechanics of creep fracture: simulation of intergranular crack growth
A computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is used in which grains and their grain boundaries are represented discretely, while the surrounding undamaged material is described as a continuum. The constitutive description of the grain boundaries accounts for the relevant physical mechanisms, i.e. viscous grain boundary sliding, the nucleation and growth of grain boundary cavities, and microcracking by the coalescence of cavities. Discrete propagation of the main crack occurs by linking up of neighbouring facet microcracks. Assuming small-scale damage conditions, the model is used to simulate the initial stages of crack growth under C* controlled, model I loading conditions. Initially sharp or blunted cracks are considered. The emphasis in this study is on the effect of the grain microstructure on crack growth.
Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings
International audienceAn extension of Gurson's famous model (Gurson, 1977) of porous plastic solids, incorporating void shape effects, has recently been proposed by Madou and Leblond (Madou and Leblond, 2012a,b, 2013; Madou et al., 2013). In this extension the voids are no longer modelled as spherical but ellipsoidal with three different axes, and changes of the magnitude and orientation of these axes are accounted for. The aim of this paper is to show that the new model is able to predict softening due essentially to such changes, in the absence of significant void growth. This is done in two steps. First, a numerical implementation of the model is proposed and incorporated into the SYSTUS and ABAQUS finite element programmes (through some freely available UMAT (Leblond, 2015) in the second case). Second, the implementation in SYSTUS is used to simulate previous " numerical experiments " of Tvergaard and coworkers (Tvergaard, 2008, 2009; Dahl et al., 2012; Nielsen et al., 2012; Tvergaard, 2012, 2015a) involving the shear loading of elementary porous cells, where softening due to changes of the void shape and orientation was very apparent. It is found that with a simple, heuristic modelling of the phenomenon of mesoscopic strain localization, the model is indeed able to reproduce the results of these numerical experiments, in contrast to Gurson's model disregarding void shape effects
Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study
The effect of stress-triaxiality on growth of a void in a three dimensional
single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular
dynamics (MD) simulations using an embedded-atom (EAM) potential for copper
have been performed at room temperature and using strain controlling with high
strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these
magnitudes can be studied experimentally, e.g. using shock waves induced by
laser ablation. Void growth has been simulated in three different conditions,
namely uniaxial, biaxial, and triaxial expansion. The response of the system in
the three cases have been compared in terms of the void growth rate, the
detailed void shape evolution, and the stress-strain behavior including the
development of plastic strain. Also macroscopic observables as plastic work and
porosity have been computed from the atomistic level. The stress thresholds for
void growth are found to be comparable with spall strength values determined by
dynamic fracture experiments. The conventional macroscopic assumption that the
mean plastic strain results from the growth of the void is validated. The
evolution of the system in the uniaxial case is found to exhibit four different
regimes: elastic expansion; plastic yielding, when the mean stress is nearly
constant, but the stress-triaxiality increases rapidly together with
exponential growth of the void; saturation of the stress-triaxiality; and
finally the failure.Comment: 35 figures, which are small (and blurry) due to the space
limitations; submitted (with original figures) to Physical Review B. Final
versio
- …
