10 research outputs found

    6-meter wavelength polarimetric inverse synthetic aperture radar mapping of the Moon

    Get PDF
    Remote sensing of planetary surfaces is an effective method for gaining knowledge of the processes that shape the planetary bodies in our solar system. This is useful for uncovering the environment of the primordial solar system and to study the current state of the upper crusts of the other planets in our neighborhood. A recent 6-meter wavelength polarimetric radar map of the Moon showed unexpectedly low depolarized radar returns in two regions on the lunar nearside. These two areas were a highland region between Mare Imbrium and Mare Frigoris, and the highland area surrounding the Schiller-Zucchius impact basin. These two regions showed characteristics unlike those of typical highland regions of the lunar surface. So far, there has been no readily available explanation for this observation. In this study, it is shown that the likely cause is an increased loss tangent due to chemical differences in the first few hundred meters of the lunar soil. We also show the absence of any coherent subsurface, which could be the preserved remains of an ancient basaltic plain. We do this by comparing the 6-meter polarimetric radar map to other relevant data sets: 1) surface TiO_2 and FeO abundance, 2) surface rock population, 3) radar maps of the Moon with other wavelengths, and 4) visual spectrum images of the Moon. The area near the Schiller-Zucchius basin was shown to be consistent with other areas with similar surface chemical compositions, but the region between Mare Imbrium and Mare Frigoris showed significantly lower mean power in comparison to otherwise similar regions. While we can not conclusively determine the cause, we hypothesize that the low radar return is explained by an increased concentration of iron and titanium oxides in the volume beneath the surface, potentially due to remnants of primordial lunar volcanism. The results show that long wavelength polarimetric radar measurements of the Moon are very powerful tools for studying the earliest stages of the evolution of the Moon

    Investigation of exceptionally radar-dark regions on the lunar nearside

    Get PDF
    Presentation at the 19th International EISCAT Symposium 2019 and 46th Annual European Meeting on Atmospheric Studies by Optical Methods, Oulu, Finland, 19.08. - 23.08.19, arranged by the University of Oulu. (http://www.sgo.fi/Events/EISCAT46AM/). Remote sensing of planetary surfaces is an effective method for gaining knowledge of the processes that shape the planetary bodies in our solar system. This is useful for uncovering the environment of the primordial solar system and to study the current state of the upper crusts of the other planets in our neighborhood. A recent 6-meter wavelength polarimetric radar map of the Moon [?] showed unexpectedly low depolarized radar returns in two regions on the lunar nearside. These two areas were a highland region between Mare Imbrium and Mare Frigoris, and the highland area surrounding the Schiller-Zucchius impact basin. These two regions showed characteristics unlike those of typical highland regions of the lunar surface. So far, there has been no readily available explanation for this observation. In this study, it is shown that the likely cause is an increased loss tangent due to chemical differences in the first few hundred meters of the lunar soil. We also show the absence of any coherent subsurface, which could be the preserved remains of an ancient basaltic plain. We do this by comparing the 6-meter polarimetric radar map to other relevant data sets: 1) surface TiO2 and FeO abundance, 2) surface rock population, 3) radar maps of the Moon with other wavelengths, and 4) visual spectrum images of the Moon. The area near the Schiller-Zucchius basin was shown to be consistent with other areas with similar surface chemical compositions, but the region between Mare Imbrium and Mare Frigoris showed significantly lower mean power in comparison to otherwise similar regions. While we can not conclusively determine the cause, we hypothesize that the low radar return is explained by an increased concentration of iron and titanium oxides in the volume beneath the surface, potentially due to remnants of primordial lunar volcanism. The results show that long wavelength polarimetric radar measurements of the Moon are very powerful tools for studying the earliest stages of the evolution of the Moon. The new EISCAT 3D installation will enable new measurements in a wavelength which has not been used before. The facility can also track the Moon to obtain a long observation time, increasing resolution. The multiple receiving locations will provide excellent interferometric baselines to, among other things, resolve the range-Doppler ambiguity. Polarimetric measurements are useful for separating surface and volume scattering, as well as potential target-based decomposition modelling

    Lightboard – a new teaching tool at the Faculty of Science and Technology at UiT

    Get PDF
    We would like to present a new tool that was built by three lecturers at UiT last semester – Lightboard. This tool was used before in other countries and other universities, but never at UiT. The COVID-19 pandemic situation motivated the lecturers to find a way to do online lectures differently. Blackboard and chalk work well for natural sciences as long as the lecture is physical and the teacher has an eye contact with the students, but this was not an option since all lectures were turned to online. The solution was found. The Lightboard gives an opportunity to face towards the students while recording the lectures and they can follow the lecturer’s hands while writing

    Planetary radar science case for EISCAT 3D

    Get PDF
    Ground-based inverse synthetic aperture radar is a tool that can provide insights into the early history and formative processes of planetary bodies in the inner solar system. This information is gathered by measuring the scattering matrix of the target body, providing composite information about the physical structure and chemical makeup of its surface and subsurface down to the penetration depth of the radio wave. This work describes the technical capabilities of the upcoming 233 MHz European Incoherent Scatter Scientific Association (EISCAT) 3D radar facility for measuring planetary surfaces. Estimates of the achievable signal-to-noise ratios for terrestrial target bodies are provided. While Venus and Mars can possibly be detected, only the Moon is found to have sufficient signal-to-noise ratio to allow high-resolution mapping to be performed. The performance of the EISCAT 3D antenna layout is evaluated for interferometric range–Doppler disambiguation, and it is found to be well suited for this task, providing up to 20 dB of separation between Doppler northern and southern hemispheres in our case study. The low frequency used by EISCAT 3D is more affected by the ionosphere than higherfrequency radars. The magnitude of the Doppler broadening due to ionospheric propagation effects associated with traveling ionospheric disturbances has been estimated. The effect is found to be significant but not severe enough to prevent high-resolution imaging. A survey of lunar observing opportunities between 2022 and 2040 is evaluated by investigating the path of the sub-radar point when the Moon is above the local radar horizon. During this time, a good variety of look directions and Doppler equator directions are found, with observations opportunities available for approximately 10 d every lunar month. EISCAT 3D will be able to provide new, high-quality polarimetric scattering maps of the nearside of the Moon with the previously unused wavelength of 1.3 m, which provides a good compromise between radio wave penetration depth and Doppler resolution

    Investigation of exceptionally radar-dark regions on the lunar nearside

    No full text
    Remote sensing of planetary surfaces is an effective method for gaining knowledge of the processes that shape the planetary bodies in our solar system. This is useful for uncovering the environment of the primordial solar system and to study the current state of the upper crusts of the other planets in our neighborhood. A recent 6-meter wavelength polarimetric radar map of the Moon [?] showed unexpectedly low depolarized radar returns in two regions on the lunar nearside. These two areas were a highland region between Mare Imbrium and Mare Frigoris, and the highland area surrounding the Schiller-Zucchius impact basin. These two regions showed characteristics unlike those of typical highland regions of the lunar surface. So far, there has been no readily available explanation for this observation. In this study, it is shown that the likely cause is an increased loss tangent due to chemical differences in the first few hundred meters of the lunar soil. We also show the absence of any coherent subsurface, which could be the preserved remains of an ancient basaltic plain. We do this by comparing the 6-meter polarimetric radar map to other relevant data sets: 1) surface TiO2 and FeO abundance, 2) surface rock population, 3) radar maps of the Moon with other wavelengths, and 4) visual spectrum images of the Moon. The area near the Schiller-Zucchius basin was shown to be consistent with other areas with similar surface chemical compositions, but the region between Mare Imbrium and Mare Frigoris showed significantly lower mean power in comparison to otherwise similar regions. While we can not conclusively determine the cause, we hypothesize that the low radar return is explained by an increased concentration of iron and titanium oxides in the volume beneath the surface, potentially due to remnants of primordial lunar volcanism. The results show that long wavelength polarimetric radar measurements of the Moon are very powerful tools for studying the earliest stages of the evolution of the Moon. The new EISCAT 3D installation will enable new measurements in a wavelength which has not been used before. The facility can also track the Moon to obtain a long observation time, increasing resolution. The multiple receiving locations will provide excellent interferometric baselines to, among other things, resolve the range-Doppler ambiguity. Polarimetric measurements are useful for separating surface and volume scattering, as well as potential target-based decomposition modelling

    Lightboard – a new teaching tool at the Faculty of Science and Technology at UiT

    Get PDF
    We would like to present a new tool that was built by three lecturers at UiT last semester – Lightboard. This tool was used before in other countries and other universities, but never at UiT. The COVID-19 pandemic situation motivated the lecturers to find a way to do online lectures differently. Blackboard and chalk work well for natural sciences as long as the lecture is physical and the teacher has an eye contact with the students, but this was not an option since all lectures were turned to online. The solution was found. The Lightboard gives an opportunity to face towards the students while recording the lectures and they can follow the lecturer’s hands while writing
    corecore