54 research outputs found
Computing all possible graph structures describing linearly conjugate realizations of kinetic systems
In this paper an algorithm is given to determine all possible structurally different linearly conjugate realizations of a given kinetic polynomial system. The solution is based on the iterative search for constrained dense realizations using linear programming. Since there might exist exponentially many different reaction graph structures, we cannot expect to have a polynomial-time algorithm, but we can organize the computation in such a way that polynomial time is elapsed between displaying any two consecutive realizations. The correctness of the algorithm is proved, and possibilities of a parallel implementation are discussed. The operation of the method is shown on two illustrative examples
Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles
Given a simple graph , a subset of is called a triangle cover if
it intersects each triangle of . Let and denote the
maximum number of pairwise edge-disjoint triangles in and the minimum
cardinality of a triangle cover of , respectively. Tuza conjectured in 1981
that holds for every graph . In this paper, using a
hypergraph approach, we design polynomial-time combinatorial algorithms for
finding small triangle covers. These algorithms imply new sufficient conditions
for Tuza's conjecture on covering and packing triangles. More precisely,
suppose that the set of triangles covers all edges in . We
show that a triangle cover of with cardinality at most can be
found in polynomial time if one of the following conditions is satisfied: (i)
, (ii) , (iii)
.
Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs,
Combinatorial algorithm
Resource-aware whole-cell model of division of labour in a two-strain consortium for complex substrate degradation
Background Low-cost sustainable feedstocks are essential for commercially viable biotechnologies. These feedstocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capacity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour (DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway. Results Here, we model a two-strain consortium, with one strain expressing an endohydrolase and a second strain expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a balance between increasing expression to enhance degradation versus the burden that higher expression causes. Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single-cell monoculture. Conclusions We demonstrate that resource-aware whole-cell models can be used to predict the benefits and limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, complex-substrate degradation pathways
Disjoint Paired-Dominating sets in Cubic Graphs
A paired-dominating set of a graph G is a dominating set D with the additional requirement that the induced subgraph G[D] contains a perfect matching. We prove that the vertex set of every claw-free cubic graph can be partitioned into two paired-dominating sets
Hitting all Maximal Independent Sets of a Bipartite Graph
We prove that given a bipartite graph G with vertex set V and an integer k,
deciding whether there exists a subset of V of size k hitting all maximal
independent sets of G is complete for the class Sigma_2^P.Comment: v3: minor chang
Complexity of Coloring Graphs without Paths and Cycles
Let and denote a path on vertices and a cycle on
vertices, respectively. In this paper we study the -coloring problem for
-free graphs. Maffray and Morel, and Bruce, Hoang and Sawada,
have proved that 3-colorability of -free graphs has a finite forbidden
induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and
Vatshelle have shown that -colorability of -free graphs for
does not. These authors have also shown, aided by a computer search, that
4-colorability of -free graphs does have a finite forbidden induced
subgraph characterization. We prove that for any , the -colorability of
-free graphs has a finite forbidden induced subgraph
characterization. We provide the full lists of forbidden induced subgraphs for
and . As an application, we obtain certifying polynomial time
algorithms for 3-coloring and 4-coloring -free graphs. (Polynomial
time algorithms have been previously obtained by Golovach, Paulusma, and Song,
but those algorithms are not certifying); To complement these results we show
that in most other cases the -coloring problem for -free
graphs is NP-complete. Specifically, for we show that -coloring is
NP-complete for -free graphs when and ; for we show that -coloring is NP-complete for -free graphs
when , ; and additionally, for , we show that
-coloring is also NP-complete for -free graphs if and
. This is the first systematic study of the complexity of the
-coloring problem for -free graphs. We almost completely
classify the complexity for the cases when , and
identify the last three open cases
Open problems on graph coloring for special graph classes.
For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring
- …