54 research outputs found

    Computing all possible graph structures describing linearly conjugate realizations of kinetic systems

    Get PDF
    In this paper an algorithm is given to determine all possible structurally different linearly conjugate realizations of a given kinetic polynomial system. The solution is based on the iterative search for constrained dense realizations using linear programming. Since there might exist exponentially many different reaction graph structures, we cannot expect to have a polynomial-time algorithm, but we can organize the computation in such a way that polynomial time is elapsed between displaying any two consecutive realizations. The correctness of the algorithm is proved, and possibilities of a parallel implementation are discussed. The operation of the method is shown on two illustrative examples

    Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

    Full text link
    Given a simple graph G=(V,E)G=(V,E), a subset of EE is called a triangle cover if it intersects each triangle of GG. Let νt(G)\nu_t(G) and τt(G)\tau_t(G) denote the maximum number of pairwise edge-disjoint triangles in GG and the minimum cardinality of a triangle cover of GG, respectively. Tuza conjectured in 1981 that τt(G)/νt(G)2\tau_t(G)/\nu_t(G)\le2 holds for every graph GG. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set TG\mathscr T_G of triangles covers all edges in GG. We show that a triangle cover of GG with cardinality at most 2νt(G)2\nu_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) νt(G)/TG13\nu_t(G)/|\mathscr T_G|\ge\frac13, (ii) νt(G)/E14\nu_t(G)/|E|\ge\frac14, (iii) E/TG2|E|/|\mathscr T_G|\ge2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithm

    Resource-aware whole-cell model of division of labour in a two-strain consortium for complex substrate degradation

    Get PDF
    Background Low-cost sustainable feedstocks are essential for commercially viable biotechnologies. These feedstocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capacity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour (DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway. Results Here, we model a two-strain consortium, with one strain expressing an endohydrolase and a second strain expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a balance between increasing expression to enhance degradation versus the burden that higher expression causes. Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single-cell monoculture. Conclusions We demonstrate that resource-aware whole-cell models can be used to predict the benefits and limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, complex-substrate degradation pathways

    Disjoint Paired-Dominating sets in Cubic Graphs

    Get PDF
    A paired-dominating set of a graph G is a dominating set D with the additional requirement that the induced subgraph G[D] contains a perfect matching. We prove that the vertex set of every claw-free cubic graph can be partitioned into two paired-dominating sets

    Hitting all Maximal Independent Sets of a Bipartite Graph

    Full text link
    We prove that given a bipartite graph G with vertex set V and an integer k, deciding whether there exists a subset of V of size k hitting all maximal independent sets of G is complete for the class Sigma_2^P.Comment: v3: minor chang

    Complexity of Coloring Graphs without Paths and Cycles

    Full text link
    Let PtP_t and CC_\ell denote a path on tt vertices and a cycle on \ell vertices, respectively. In this paper we study the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs. Maffray and Morel, and Bruce, Hoang and Sawada, have proved that 3-colorability of P5P_5-free graphs has a finite forbidden induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and Vatshelle have shown that kk-colorability of P5P_5-free graphs for k4k \geq 4 does not. These authors have also shown, aided by a computer search, that 4-colorability of (P5,C5)(P_5,C_5)-free graphs does have a finite forbidden induced subgraph characterization. We prove that for any kk, the kk-colorability of (P6,C4)(P_6,C_4)-free graphs has a finite forbidden induced subgraph characterization. We provide the full lists of forbidden induced subgraphs for k=3k=3 and k=4k=4. As an application, we obtain certifying polynomial time algorithms for 3-coloring and 4-coloring (P6,C4)(P_6,C_4)-free graphs. (Polynomial time algorithms have been previously obtained by Golovach, Paulusma, and Song, but those algorithms are not certifying); To complement these results we show that in most other cases the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs is NP-complete. Specifically, for =5\ell=5 we show that kk-coloring is NP-complete for (Pt,C5)(P_t,C_5)-free graphs when k4k \ge 4 and t7t \ge 7; for 6\ell \ge 6 we show that kk-coloring is NP-complete for (Pt,C)(P_t,C_\ell)-free graphs when k5k \ge 5, t6t \ge 6; and additionally, for =7\ell=7, we show that kk-coloring is also NP-complete for (Pt,C7)(P_t,C_7)-free graphs if k=4k = 4 and t9t\ge 9. This is the first systematic study of the complexity of the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs. We almost completely classify the complexity for the cases when k4,4k \geq 4, \ell \geq 4, and identify the last three open cases

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring
    corecore