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Abstract

In this paper an algorithm is given to determine all possible structurally different
linearly conjugate realizations of a given kinetic polynomial system. The solution is
based on the iterative search for constrained dense realizations using linear program-
ming. Since there might exist exponentially many different reaction graph structures,
we cannot expect to have a polynomial-time algorithm, but we can organize the com-
putation in such a way that polynomial time is elapsed between displaying any two
consecutive realizations. The correctness of the algorithm is proved, and possibilities
of a parallel implementation are discussed. The operation of the method is shown
on two illustrative examples.
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1 Introduction
Chemical reaction networks (CRNs) obeying the mass action law can be originated from
the dynamical modelling of chemical and biochemical processes. However, these models
are also capable of describing all important phenomena of nonlinear dynamical behaviour
and have several applications in different fields of science and engineering [1, 2]. Kinetic
systems, which describe the dynamical behaviour of the CRNs have a simple algebraic
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characterization, which makes it possible to develop effective computational methods for
dynamical analysis, and even control [3, 4, 5].

The graph representation of reaction networks, especially the exploration of the rela-
tion between the reaction graph structure and the dynamics of the network (preferably
without the precise knowledge of the reaction rate coefficients) has become an impor-
tant research area in chemical reaction network theory since the 1970’s. One of the first
comprehensive overviews of mass-action-type CRNs can be found in [6] clearly indicating
that the class of such kinetic systems is far more general than the description of “chemi-
cally reacting mixtures in closed vessels”. In the same article, the Kirchhoff matrix based
description of reaction networks is also introduced.

Complex balance is a fundamentally important property of CRNs (see, e.g [7, 8, 9]).
Roughly speaking, complex balance means that the signed sum of the incoming and
outgoing fluxes corresponding to each vertex (complex) at equilibrium is zero. It is an
interesting and important property that the set of equilibrium points of any complex bal-
anced system forms a toric variety in the state space [10]. One of the most significant
achievements in chemical reaction network theory is the Deficiency Zero Theorem saying
that weakly reversible reaction networks of deficiency zero are complex balanced, inde-
pendently of the values of the reaction rate coefficients [11]. An important recent result
related to complex balance is the possible general proof of the Global Attractor Conjec-
ture [12]. According to this conjecture, complex balanced CRNs with mass action kinetics
are globally stable within the positive orthant with a known logarithmic Lyapunov func-
tion that is independent of the reaction rate coefficients. The experimentally observed
robust dynamical behavior of certain reaction mechanisms can also be understood from
the special properties of the network structure [13].

It is known from the “fundamental dogma of chemical kinetics” that the reaction
graph corresponding to a given kinetic dynamics is generally non-unique [14, 15]. This
phenomenon is also called dynamical equivalence or macro-equivalence [6, 16], and
it has been studied in the case of Michaelis-Menten kinetics, too [17]. Clearly, this kind
of structural non-uniqueness may seriously hamper the parameter estimation (inference)
of reaction networks from measurement data, that is generally a challenging task [18, 19].
To improve the solvability of such inference problems, it is worth involving as much prior
information as possible into the computation problem in the form of additional con-
straints [20, 21, 22]. Necessary and sufficient conditions for a general polynomial vector
field to be kinetic were first given in [16]. In the constructive proof, a procedure was
given to construct one possible dynamically equivalent reaction network structure (called
the canonical structure) realizing a kinetic dynamics. The first theoretical results about
dynamical equivalence of CRNs were published in [23] pointing out the convex cone struc-
ture of the parameter space. Motivated by these results, the numerical computation of
dynamically equivalent realizations was first put into an optimization framework in [24]
by proposing a method for determining the graph structures containing the minimum or
maximum number of reactions. It is also important to know that several fundamental
properties of CRNs such as (weak) reversibility, complex and detailed balance or defi-
ciency are not ‘encoded’ into the kinetic differential equations but may vary with the
dynamically equivalent structures corresponding to the same dynamics. This fact is an
important motivating factor to develop methods for the computation of reaction graphs
of kinetic systems.

There is a significant extension of dynamical equivalence called linear conjugacy, where
the kinetic model is subject to a positive definite linear diagonal state transformation [25].
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Obviously, linear conjugacy preserves the main qualitative dynamical properties of CRNs
like stability and multiplicities or the boundedness of solutions. However, due to the larger
degree of freedom introduced by the transformation parameters, it allows a wider variety
of possible reaction graph structures than dynamical equivalence does. Therefore, several
optimization based computational methods have been suggested to find linearly conjugate,
or as a special case, dynamically equivalent realizations of kinetic systems having preferred
properties such as density/sparsity, complex or detailed balance, or minimum deficiency
[26]. An algorithm for finding all possible sparse dynamically equivalent reaction network
structures was proposed and applied for a Lorenz system transformed into kinetic form
in [27], using the mixed integer linear programming (MILP) framework.

After treating the above mentioned important special cases, a question arises naturally:
Is it possible to give a computationally efficient algorithm for determining all possible re-
action graph structures corresponding to linearly conjugate CRN realizations of a given
kinetic system? The aim of this paper is to give a solution to this problem. Of course, we
cannot expect to find a polynomial-time algorithm for the overall problem, since exponen-
tially many different realizing graph structures may exist for a kinetic model. However,
as it will be shown, it is possible to achieve that each computation step (i.e. finding and
displaying the next realization after the previous one) is performed in polynomial time.

2 Basic notions
In this section, we summarize the basic notions and results for both algebraic and graph-
based representations of CRNs. We will use the following notations:

R the set of real numbers
R+ the set of nonnegative real numbers
N the set of natural numbers, including 0
Hn×m the set of matrices having entries from a set H in n rows and m columns
[M ]ij the entry in row i and column j of matrix M

2.1 Algebraic characterization

It is important to remark here that similarly to [11], [1] or [2], we consider reaction net-
works as a general system class representing nonlinear dynamical systems with nonnega-
tive states, therefore we do not require that they fulfil actual physico- chemical constraints
like mass conservation. In other words, there is no constraint on how different complexes
can transform into each other in the network.

Definition 2.1. Chemical reaction networks can be determined by the following three sets
(see e.g. [28, 11]).

• A set of species: S = {Xi | i ∈ {1, . . . , n}}

• A set of complexes: C = {Cj | j ∈ {1, . . . ,m}}, where
Cj =

n∑
i=1

αjiXi j ∈ {1, . . . ,m}

αji ∈ N j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}
The complexes are formal linear combinations of the species with coefficients, called
the stoichiometric coefficients.
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• A set of reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}
The ordered pair (Ci, Cj) corresponds to the reaction Ci → Cj.

To each ordered pair (Ci, Cj) where i, j ∈ {1, . . .m} and i 6= j there belongs a nonnegative
real number kij called the reaction rate coefficient. The reaction Ci → Cj takes place
if and only if the corresponding coefficient is positive.

The properties of the reaction network are encoded by special matrices.

Definition 2.2. Y ∈ Nn×m is the complex composition matrix of the CRN if its
entries are the stoichiometric coefficients.

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (1)

Definition 2.3. Ak ∈ Rm×m is the Kirchhoff matrix of the CRN if its entries are
determined by the reaction rate coefficients as follows:

[Ak]ij =

kji if i 6= j

−
m∑

l=1,l 6=i
kil if i = j

(2)

Since the sum of entries in each column is zero, Ak is also called a column conservation
matrix.

Let x : R → Rn
+ be a function, which defines the concentrations of the species

depending on time. Assuming mass-action kinetics, the dynamics of the function x can
be described by dynamical equations of the following form:

ẋ = Y · Ak · ψ(x) (3)

where ψ : Rn
+ → Rm

+ is a monomial-type vector-mapping,

ψj(x) =
n∏
i=1

x
αji

i , j = 1, . . . ,m (4)

According to Definitions 2.2, 2.3 and Equations (3), (4) the dynamics of a reaction
network can be given by a set of polynomial ODEs, but not every polynomial system
describes a CRN.

Definition 2.4. Let x : R→ Rn
+ be a function, M ∈ Rn×p a matrix and ϕ : Rn

+ → Rp
+ a

monomial function. The polynomial system

ẋ = M · ϕ(x) (5)

is called kinetic if there exist a matrix Y ∈ Nn×m and a Kirchhoff matrix Ak ∈ Rm×m,
so that

M · ϕ(x) = Y · Ak · ψ(x) (6)

where ψ : Rn
+ → Rm

+ is a monomial function determined by the entries of matrix Y ,
ψj(x) =

∏n
i=1 x

[Y ]ij
i for j ∈ {1, . . . ,m}.
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The matrices Y and Ak characterize the dynamics of the kinetic system, as well as the
CRN. However, the polynomial kinetic system does not uniquely determine the matrices.
Reaction networks with different sets of complexes and reactions can be governed by the
same dynamics, see e.g. [6, 23, 24]. If the matrices Y and Ak of a reaction network fulfil
Equation (6), then the CRN is called a dynamically equivalent realization of the
kinetic system (3), and it is denoted by the matrix pair (Y,Ak).

The notion of dynamical equivalence can be extended to the case when the polynomial
system is subject to a positive linear diagonal state transformation. It is known from [29]
that such a transformation preserves the kinetic property of the system.

Let T ∈ Rn×n be a positive definite diagonal matrix. The state transformation is
performed as follows:

x = T · x̄, x̄ = T−1 · x (7)

Applying it to the polynomial system (5) we get

˙̄x = T−1 · ẋ = T−1 ·M · ϕ(x) = T−1 ·M · ϕ(T · x̄) = T−1 ·M · ΦT · ϕ(x̄) (8)

where ΦT ∈ Rn×n is a positive definite diagonal matrix so that [ΦT ]ii = ϕi(T · 1) for
i ∈ {1, . . . , n}, ϕi is the ith coordinate function of ϕ, and 1 ∈ Rn is a column vector with
all coordinates equal to 1. Now we can give the extended definition.

Definition 2.5. A reaction network (Y,A′k) is a linearly conjugate realization of the
kinetic system (5) if there exists a positive definite diagonal matrix T ∈ Rn×n so that

Y · A′k · ψ(x) = T−1 ·M · ΦT · ϕ(x) (9)

where Y ∈ Nn×m, ψ : Rn
+ → Rm

+ with ψj(x) =
∏n

i=1 x
[Y ]ij
i for j ∈ {1, . . . ,m}, and

A′k ∈ Rm×m is a Kirchhoff matrix.

It can be seen that dynamical equivalence is a special case of linear conjugacy, when
the matrix T , and therefore the matrices T−1 and ΦT as well are identity matrices.

Since the monomial functions ϕ and ψ in Equations (6) and (9) might be different, in
both cases the set of complexes is not fixed. By applying the method described in [16] a
suitable set of complexes can be determined, but there are other possible sets as well. It
is clear that the complexes determined by the monomials of function ϕ must be in the
set C, but arbitrary further complexes might be involved as well, which appear in the
original kinetic equations with zero coefficients. These additional complexes change the
dimensions of the matrices Y and A′k, therefore we have to modify the matrices M and
ΦT as well, in order to get the following equation:

Y · A′k · ψ(x) = T−1 ·M ′ · Φ′T · ψ(x) (10)

where the matrices M ′ ∈ Rn×m and Φ′T ∈ Rm×m have the same columns and diagonal
entries as M and ΦT belonging to the complexes determined by ϕ, and zero columns and
1 diagonal entries belonging to all additional complexes, respectively.

Since there is the same monomial-type vector-mapping ψ on both sides of Equation
(10), the equation can be fulfilled if and only if the coefficients belonging the same mono-
mials are pairwise identical. This means that by using the notation Ak = A′k · Φ′T

−1, we
can rewrite Equation (10) as
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Y · Ak = T−1 ·M ′ (11)

where Ak is a Kirchhoff matrix, too, obtained by scaling the columns of A′k by positive
constants. It is easy to see that this operation preserves the set of reactions, but changes
the values of the non-zero entries. The actual reaction rate coefficients of the linearly
conjugate network are contained in the matrix

A′k = Ak · Φ′T (12)

From now on we will consider only linearly conjugate realizations on a fixed set of
complexes. A reaction network which is a linearly conjugate realization of a kinetic system
can be identified by its matrices T , Y , and A′k. However, since matrix Y is fixed, and the
matrix Ak is returned by the computation, we will simply denote this realization by the
matrix pair (T,Ak).

2.2 Graph representation

A reaction network can be described by a weighted directed graph.

Definition 2.6. The graph G(V,E) representing the CRN is called Feinberg–Horn–
Jackson graph, or reaction graph for short. If the weights are given by the function
w : E(G)→ R+, the reaction graph is defined as follows:

• the vertices correspond to the complexes, V (G) = C,

• the directed edges describe the reactions, E(G) = R,
there is a directed edge from vertex Ci to vertex Cj if and only if the reaction Ci → Cj
takes place (i.e. kij > 0),

• the weights of the edges are the reaction rate coefficients,
w((Ci, Cj)) = kij where (Ci, Cj) ∈ R.

Loops and multiple edges are not allowed in a reaction graph.

The applicability of the algorithm presented in this paper depends on a recently proved
important property of the so-called dense realizations. Therefore, we formally define the
notion of dense realizations, and then recall the related result from [30].

Definition 2.7. A realization of a CRN is a dense realization if the maximum number
of reactions take place.

It is easy to see that the dense property of a CRN realization is equivalent to the feature
that its Kirchhoff matrix Ak has the maximum number of positive off-diagonal entries.
In a set of weighted directed graphs we call a graph super-structure if it contains each
element as a subgraph not considering edge weights, and it is minimal under inclusion. It
is clear that the structure of the super-structure graph is unique, because there cannot be
two different graphs that are subgraphs of each other, but have different structures. The
following proposition published in [30] says that dense linearly conjugate realizations have
a super-structure property even if an arbitrary additional finite set of linear constraints
on the rate coefficients and the transformation parameters has to be fulfilled.
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Proposition 2.8. [30] Among all the realizations linearly conjugate to a given kinetic
system and fulfilling a finite set of additional linear constraints there is a realization
determining a super-structure.

An important example of the linear constraints mentioned in Proposition 2.8 is the
condition for mass conservation. According to this, the total mass in the CRN is preserved
(i.e. the system is called kinetically mass conserving [31]) if and only if there exists a
strictly positive vector k ∈ Rn such that the following holds:

k> · Y · Ak = 0>, (13)

where 0 ∈ Rn is the null vector. The chemical meaning of the vector k is that its entries are
the molecular (or atomic) weights of the species in the network. By using Equation (12)
it is easy to see that for a given vector k, Equation (13) holds if and only if (k> · Y ·A′k)>
is the null vector, since Φ′T is an invertible diagonal matrix. Therefore, the computation
of all reaction graph structures that describe realizations obeying mass conservation with
a given vector k is also possible by using the method proposed in Section 4 and adding
Equation (13) to the computation constraints.

3 Computation model for computing linearly conjugate
realizations

Linearly conjugate realizations can be computed by using a linear optimization model
[26]. As it was described in Section 2.1, Equation (11) must be fulfilled. We assume that
the set of complexes is given, so the coefficient matrix does not need any modification,
therefore M = M ′ holds. Consequently the equation characterizing linearly conjugate
realizations can be written as follows:

T−1 ·M − Y · Ak = 0 (14)

where 0 ∈ Rn×m denotes the zero matrix. The matrices Y and M are fixed, and the
variables are contained in the matrices T−1 and Ak. Specifically, the variables are the
off-diagonal entries of the matrix Ak and the diagonal entries of the matrix T−1. We do
not consider the diagonal entries of matrix Ak as variables, because these are uniquely
determined by the off-diagonal entries of matrix Ak:

[Ak]ii = −
m∑
j=1
j 6=i

[Ak]ji i ∈ {1, . . . ,m} (15)

Equation (14) guarantees linear conjugacy, and Equations (15), (16), and (17) ensure that
the matrices T−1 and Ak meet their definitions.

[Ak]ij ≥ 0 i, j ∈ {1, . . . ,m}, i 6= j (16)
[T−1]ii > 0 i ∈ {1, . . . , n} (17)

In our algorithm it will be necessary to exclude some set H ⊂ R of reactions from the
computed realizations. This can be written in the form of a linear constraint as follows:

[Ak]ji = 0 (Ci, Cj) ∈ H (18)
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The feasibility of the linear constraints (14)–(18) can be verified, and valid solutions (if
exist) can be determined in the framework of linear programming.

It is important to remark that in the above computation model, the boundedness prop-
erty of all variables can be ensured so that the set of possible reaction graph structures
remains the same as it was proved in [30].
Proposition 3.1. [30] For any linearly conjugate realization (T,Ak) of a kinetic system
there is another linearly conjugate realization (T ∗, A∗k) with all variables smaller than
the given upper bound(s) so that the reaction graphs describing the two realizations are
structurally identical.

In our algorithm it is necessary to compute constrained dense linearly conjugate re-
alizations, which rises two technical problems. The first is that we have to maximize the
number of positive off-diagonal entries of matrix Ak. The second one is that there are
strict inequalities (the diagonal entries of matrix T−1 must be strictly positive). There
are several possibilities for handling these issues. In our implementation, we will apply
the method presented in [30], which can determine constrained dense linearly conjugate
realizations in polynomial time. The reasons for this choice are briefly the following.
Several solutions use mixed integer linear programming (MILP) for determining dense
realizations (see e.g. [26] and the references therein). However, MILP problems are known
to be NP-hard and their application would not allow the time complexity of the compu-
tation between displaying any two consecutive realizations to be polynomial. Moreover,
the treatment of strict inequalities in optimization is not trivial and needs special atten-
tion [32]. Therefore, inequalities like x > c are often transformed in practice to the form
x ≥ c + ε, where ε > 0 is a small number, but this may make the computations less
accurate. The method in [30] avoids both issues mentioned above by utilizing the spe-
cial properties of linearly conjugate realizations, and therefore, this is the most reliable
polynomial-time method that we currently know.

4 Algorithm for computing all realizations
Linearly conjugate realizations are parametrically not unique, the matrices Ak and T−1 in
Equation (14) can be scaled by the same arbitrary positive scalar [25, 30]. Therefore, our
aim is to determine all the possible reaction graph structures describing linearly conjugate
realizations of a kinetic system. In this section we present and analyze an algorithm for
computing all such reaction graph structures. This is the main result of the paper.

From now on the reaction graphs will be assumed to be unweighted directed graphs,
i.e. by reaction graph we will mean only its structure. According to Proposition 2.8,
if GD is the reaction graph of the dense realization and graph GR describes another
realization, then E(GR) ⊆ E(GD) holds. As it was proven in [30], the dense realization
can be determined by a polynomial algorithm, which is the first step of our method.

There might be reactions that take place in each realization. These are called core
reactions, and the edges representing them are the core edges. The set of core edges
is denoted by Ec, which can also be determined by a polynomial algorithm [21]. It is
worth doing this step, since it might save some computational time and space, but it is
not necessary for the running of the algorithm.

Based on the above, each reaction graph can be uniquely determined if it is known
which non-core reactions of the dense realization take place in the reaction network. Thus,
we represent the reaction graphs by binary sequences of length N = |E(GD) \ Ec|.
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In order to define the binary sequences we fix an ordering of the non-core edges. Let
ei denote the ith edge. If R is a binary sequence, then let R[i] denote the ith coordinate
of the sequence and GR be the reaction graph described by R. If a realization can be
decoded by the binary sequence R, then

e ∈ E(GR)⇐⇒


e ∈ Ec
or

∃i ∈ {1, . . . , N} e = ei, R[i] = 1

(19)

From now on the term ‘sequence’ will refer to such a binary sequence of length N .
The sequence representing the dense realization (with all coordinates equal to 1) will be
denoted by D.

For the efficient operation of the algorithm, appropriate data structures are needed as
well. The discovered graph structures are stored in a binary array of size 2N called Exist,
where the indices of the fields are the sequences as binary numbers. At the beginning the
values in every field are zero, and after the computation the value of field Exist[R] is 1 if
and only if there is a linearly conjugate realization described by the sequence R.

We also need N + 1 stacks, indexed from 0 to N . The kth stack is referred to as S(k).
During the computation, sequences are temporarily stored in these stacks, following the
rule: the sequence R describing a linearly conjugate realization might be in stack S(k)
if and only if there are exactly k coordinates of R which are equal to 1, i.e. exactly k
reactions take place in the realization.

At the beginning all stacks are empty, but during the running of the algorithm we
push in and pop out sequences from them. The command ‘push R into S(k)’ pushes the
sequence R into the stack S(k), and the command ‘pop S(k)’ pops a sequence out from
S(k) and returns it. (It makes no difference, in what order are the elements of the stacks
popped out, but by the definition of the data structure the sequence pushed in last will
be popped out first.) The number of sequences in stack S(k) are denoted by size.S(k),
and the number of coordinates equal to 1 in the sequence R are referred to as e(R).

Within the algorithm the following procedure is used repeatedly:

FindLinConjWithoutEdge(M,Y,R, i) computes a constrained dense linearly conju-
gate realization of the kinetic system with coefficient matrix M and complex composition
matrix Y . The additional inputs R and i are a sequence encoding the input reaction
graph structure, and an integer index, respectively. The procedure returns a sequence U
encoding the graph structure of the computed realization such that GU is a subgraph of
GR and U [i] = 0. If there is no such realization, then −1 is returned. This computation
can be carried out in polynomial time as it is described in [30].
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Algorithm 1 Determines all reaction graphs describing linearly conjugate realizations
1: procedure Linearly conjugate graph structures(M,Y )
2: push D into S(N)
3: Exist[D]:=1
4: for k = N to 1 do
5: while size.S(k) > 0 do
6: R:= pop S(k)
7: for i = 1 to N do
8: if R[i] = 1 then
9: U := FindLinConjWithoutEdge(M,Y,R, i)

10: if U ≥ 0 and Exist[U ] = 0 then
11: Exist[U ]:= 1
12: push U into S(e(U))
13: end if
14: end if
15: end for
16: Print R
17: end while
18: end for
19: end procedure

Proposition 4.1. For any kinetic system and any suitable fixed set of complexes all the
possible reaction graphs describing linearly conjugate realizations can be computed after
finitely many steps by Algorithm 1. The whole computation might last until exponential
time depending on the number of different reaction graphs, but the time elapsed between
the displaying of two linearly conjugate realizations is always polynomial.
Proof. Let us assume that there is a sequence W which is not returned by the algorithm,
but it describes a linearly conjugate realization of the kinetic system. Let R be another
realization, which was computed by the algorithm and GW is a subgraph of GR, i.e.
R[i] = 1 if W [i] = 1 for all i ∈ {1, . . . , N}. The sequence D fulfils this property for each
W , but if there is more than one such sequence, then let us chose R to be the one with
minimum number of coordinates equal to 1. It follows from the definition of the sequences
W and R that there must be an index j so that W [j] = 0 and R[j] = 1. (If there is more
than one such index, then let us chose the smallest one.) During the computation there
is a step (line 9) when we apply procedure FindLinConjWithoutEdge(M ,Y ,R,j) to
compute the sequence U , which is a dense realization with the properties: U [j] = 0 and
GU is a subgraph of GR. According to the properties of W , it fulfils the constraints of
the optimization problem specified in the procedure, therefore it cannot be infeasible and
GW must be a subgraph of GU . But it leads to a contradiction, since if W is equal to U ,
then W is returned by the algorithm, and if they are not equal, then R is not minimal.

A sequence R popped out from stack S(k) is printed out after all its coordinates
are examined. This computation requires the application of the procedure FindLinCon-
jWithoutEdge(M ,Y ,R,i) k times, with some additional minor computation. From the
properties of the procedure it follows that the computation between displaying two con-
secutive realizations can be performed in polynomial time.

In each stack there might be finitely many sequences (in stack S(k) at most
(
N
k

)
) and

in case of each sequence, only finitely many calls of FindLinConjWithoutEdge have
to be performed, therefore the whole computation can be performed in finite time.
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It is important to see that we compute the entries of the corresponding matrices Ak
and T−1 in each step of Algorithm 1 according to Eqs. (12)-(16), but do not store them.
This is possible because to set up the constraints for the subsequent computations, it
is enough to know only the structure (i.e. the zero and non-zero entries) of matrix Ak
corresponding to the realization that is popped out of the actual stack. If one wants to
store and/or display the actual reaction rate coefficients and transformation parameters,
it is possible by slightly modifying the procedure FindLinConjWithoutEdge to return
not only the resulting reaction graph encoded by the binary sequence U , but also the
matrices T and Ak.

4.1 Parallelization of the algorithm

Due to the possible large number of different reaction graphs even in the case of rel-
atively small networks (see Example 2 in Section 5), it is worth studying the parallel
implementation of the proposed algorithm. This may dramatically improve the computa-
tional performance as it has been shown in the case of several other fundamental problems
(see, e.g. [33, 34]).

For the sequences R in each stack S(k) and for all the indices i ∈ {1, . . . , N} the results
coming from the executions of the procedure FindLinConjWithoutEdge(M,Y,R, i) do
not have any effect on each other, consequently these might be computed in a parallel
way. The obtained sequences are pushed into stacks with indices smaller than k, but only
the ones that have not been found earlier. It follows that the procedure might be applied
in parallel for sequences from different stacks as well, since the repetition of the same
computation is avoided by the application of the array Exist.

In case of dynamically equivalent realizations it is possible to do even more paralleliza-
tion. These are special linearly conjugate realizations, where the transformation matrix
T is the unit matrix, the variables are the entries of matrix Ak, and Equation (14) deter-
mining dynamical equivalence can be written in a more simple form:

Y · Ak = M (20)

It is easy to see that the values of the variables in the jth column of matrix Ak depend
only on the parameters in the jth column of matrix M and on the entries of matrix
Y . Therefore the columns of Ak might be computed parallely, and any dynamically
equivalent realization can be determined by choosing a possible solution in case of each
column and build the Kirchhoff matrix of the realization from them. It follows that the
number of dynamically equivalent realizations, that describe different reaction graphs, is
the product of the numbers of the possible columns.

The super-structure property of dense realizations is inherited by the columns of the
matrix Ak, therefore we can use the same algorithm for these as we used for linearly
conjugate realizations.

In this algorithm it is better to determine the ordering of non-core edges according
to columns. Let us denote the number of non-core edges in column j by Nj, and the
sequence describing the jth column of the dense dynamically equivalent realization by
Dj. The stacks are also needed to be defined separately for each column. The sequence
Rj representing a jth column gets stored in stack Sj(k) if and only if the number of
coordinates equal to 1, denoted by e(Rj), is exactly k.

We also need a two-dimensional binary array denoted by ExistColumn[j, Rj] to store
the computed sequences in case of each column. The first index refers to the column and
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the second index is the sequence as a binary number. At the beginning all coordinates are
equal to zero.

The applied procedures are as follows:

• DyneqColumnWithoutEdge(M,Y, j, Rj, i) computes the jth column of the Kirch-
hoff matrix describing a constrained dense dynamically equivalent realization of the
kinetic system with coefficient matrix M and complex composition matrix Y . The
constraints are determined by the two last inputs, a sequence Rj and an integer
index i. The procedure returns a sequence Uj representing a jth column so that
Uj[l] = 0 if Rj[l] = 0 for all l ∈ {1, . . . Nj} and Uj[i] = 0. If there is no such column,
then −1 is returned. This computation can be performed in polynomial time.

• BuildAk(ExistColumn) builds all possible dynamically equivalent realizations from
the sequence parts in ExistColumn and saves them in the array Exist.

Algorithm 2 Determines all reaction graphs describing dynamically equivalent realiza-
tions applying parallelization
1: procedure Dynamically equivalent graph structures(M,Y )
2: for j = 1 to m do
3: push Dj into Sj(Nj)
4: for k = Nj to 1 do
5: while size.Sj(k) > 0 do
6: Rj:= pop Sj(k)
7: for i = 1 to Nj do
8: if Rj[i] = 1 then
9: Uj := DyneqColumnWithoutEdge(M,Y, j, Rj, i)

10: if Uj ≥ 0 and ExistColumn[j, Uj] = 0 then
11: ExistColumn[j, Uj]:=1
12: push Uj into Sj(e(Uj))
13: end if
14: end if
15: end for
16: end while
17: end for
18: end for
19: BuildAk(ExistColumn)
20: end procedure

5 Examples
In this section we demonstrate the operation of our algorithm on kinetic systems with
a small (Section 5.1) and a slightly bigger (Section 5.2) set of complexes. The algorithm
was implemented in MATLAB [35] using the YALMIP modelling language [36].

We will see that the number of possible reaction graphs describing linearly conjugate
realizations grows very fast depending on the number of complexes.

12



5.1 Example 1

In this example taken from [37], we examine the kinetic system described by the following
dynamical equations:

ẋ1 = 3k1 · x32 − k2 · x31
ẋ2 = −3k1 · x32 + k2 · x31

According to the monomials there are (at least) two species, S = {X1, X2}, and we fix the
set of complexes to be C = {C1, C2, C3}, where C1 = 3X2, C2 = 3X1, and C3 = 2X1 +X2.
Based on the above, the inputs of the algorithm – the matrices Y and M – are as follows:

Y =

[
0 3 2
3 0 1

]
M =

[
3k1 −k2 0
−3k1 k2 0

]
For the numerical computations, the parameter values k1 = 1 and k2 = 2 were used.
As the result of the algorithm we get 18 different sequences/reaction graphs. This small
example is special in the sense that the sets of different reaction graphs corresponding
to dynamically equivalent and linearly conjugate realizations are the same, since the
computed transformation matrix T was the unit matrix in each case. Using the numerical
results, it was easy to symbolically solve the equations for dynamical equivalence, therefore
we can give the computed reaction rate coefficients as functions of k1 and k2.

The reaction graphs are denoted by G1, . . . , G18 and are presented with suitable re-
action rate coefficients in Figure 1. From the computation it follows that there are two
reaction rate coefficients k31 and k32 which do not depend on the input parameters, just
on each other, and the reactions determined by these might together be present or
non-present in the reaction network. Therefore, a nonnegative parameter p is applied to
determine the values of these coefficients. We get the reaction graphs G1, . . . , G9 if the
parameter p is positive, and if it is zero then we get the reaction graphs G10, . . . , G18.
The reaction graph G1 (the complete directed graph) describes the dense realization,
and consequently all other reaction graphs are subgraphs of it (not considering the edge
weights).
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Figure 1: All reaction graphs of Example 1 with possible reaction rate coefficients
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5.2 Example 2

The purpose of this example is to show the possible large number of structurally different
linearly conjugate realizations even in the case of a relatively small kinetic system. The
reaction network examined in this section was published in [38] as example A1. In the
original article it is given by the following realization, described by the Kirchhoff matrix
Ak and reaction graph shown in Figure 2.
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Figure 2: The reaction graph of Example 2

Ak =


−k1 k2 0 0 0 0

0 −k2 k3 0 0 0
k1 0 −k3 k4 0 0
0 0 0 −k4 0 0
0 0 0 0 −k5 0
0 0 0 0 k5 0



In the reaction network there are two species, S = {X1, X2} and six complexes, C =
{C1 = 0, C2 = X1, C3 = X2, C4 = 2X1, C5 = 2X1 + X2, C6 = 3X1}. According to the
definitions, the complex composition matrix Y and the matrix M = Y ·Ak of coefficients
are as follows:

Y =

[
0 1 0 2 2 3
0 0 1 0 1 0

]
M =

[
0 −k2 k3 −2k4 k5 0
k1 0 −k3 k4 −k5 0

]
The reaction rate coefficients used in the computations were the same as in [38], namely:
k1 = 1, k2 = 1, k3 = 0.05, k4 = 0.1, k5 = 0.1. With these parameter values the system
shows oscillatory behaviour. In the dense linearly conjugate realization shown in Figure
3, there are 19 reactions, and it can be given by the matrices Adk and T d as:

C6 C2

C3C5

C1

C4

Figure 3: The reaction graph of the dense
linearly conjugate realization

Ad
k =


−80 1.167 · 107 3.083 3.333 · 106 0.333 0

0 −2 · 107 0.5 5 · 106 0.5 0
80 0 −4.25 4 0.5 0
0 5 · 106 0.25 −2 · 107 1 0
0 0 0.25 4 −8.5 0
0 3.333 · 106 0.167 1.167 · 107 6.167 0



(T d)−1 =

[
40 0
0 80

]

Our algorithm returned as many as 17160 different reaction graphs describing linearly
conjugate realizations of this kinetic system, all of which can be found in the electronic
supplement available at:
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http://daedalus.scl.sztaki.hu/PCRG/works/publications/Ex2_AllRealSuppl.pdf

Out of these, 17154 can be described by a weakly connected reaction graph, while 6 have
disconnected reaction graphs, with the same linkage classes. Since this property can be
ensured by linear constraints (the edges between the linkage classes are excluded), accord-
ing to Proposition 2.8 the realization having the maximum number of edges determines a
super-structure among realizations obeying the same constraints. This constrained dense
realization can be described by the matrices Aldk and T ld, and its reaction graph is shown
in Figure 4.

C6 C2

C3C5

C1

C4

Figure 4: The reaction graph of the dense
linearly conjugate realization having two
linkage classes

Ald
k =


−50 1.25 · 107 0.625 0 0 0

0 −2.5 · 107 1.25 0 0 0
50 0 −2.5 5 0 0
0 1.25 · 107 0.625 −5 0 0
0 0 0 0 −5 0
0 0 0 0 5 0


(T ld)−1 =

[
50 0
0 50

]

It also turned out from the computations that in this case the sparse realization is
unique, and it is the initial network shown in Figure 2. The distribution of the computed
reaction graphs over the number of reactions is shown in Fig. 5.
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Figure 5: Number of different reaction graphs with given numbers of reactions (directed
edges) in the case of Example 2
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Figures 6 and 7 show the solutions of the original and the dense linearly conjugate
realizations from consistent initial conditions. The oscillatory behaviour is clearly shown,
and one can check from the results that x(t) = (T d)−1 · x(t) holds for all t ≥ 0.
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Figure 6: Solution of the original system in Example 2 defined by the matrix pair (Y,Ak)
from the initial conditions x(0) = [1 2]T
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Figure 7: Solution of the linearly conjugate system in Example 2 defined by the matrix
pair (Y,Adk) from the initial conditions x(0) = (T d)−1 · x(0) = [40 160]T

5.3 Computation results of the parallel implementation

We tested the parallel implementation of Algorithm 1 on a workstation with two 2.60GHz
Xeon (E5-2650 v2) processors with 32 Gb RAM (DDR3 1600 MHz, 0.6ns). The imple-
mentation was written in Matlab R2013a using the built-in parallelization toolbox.

Let L denote the number of threads. The tests were carried out with L ∈ {1, 2, 4, 6,
8, 10, 12}, where these threads are working on the innermost loop (lines 7 to 15) of the
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algorithm. We can easily conclude that the most time-consuming step is the calling of
procedure FindLinConjWithoutEdge which required on average 1.9 ms computation
time with 0.6 ms standard deviation in case of Example 2 (calculated considering 130 000
executions). Figure 8 shows the total execution times in case of both examples with
different numbers of threads on log-log scales.

100 101

Number of threads

10000

50000

100000

500000

1e+06

T
ot

al
 e

xe
cu

tio
n 

tim
e 

[s
ec

]

  1

  5

 10

 50

100

Example 2
Example 1

Figure 8: Overall execution times of Examples 1 and 2 with different numbers of threads

One can expect that the computation of N different edge exclusions by using the
procedure FindLinConjWithoutEdge reaches maximum efficiency when L = N holds.
It can be seen that in the case of Example 1 (where N = 6) we reach the maximum
efficiency indeed, and for a larger number of threads we get slightly longer computation
times. The improving efficiency with the larger number of threads can be seen in the case
of Example 2, where the value of N was 19. The results show in the studied thread-range
that by doubling the number of threads, the total execution time approximately gets
halved.

In case of Example 2 we have recorded the computation times separately for the
different stacks as well. Here the computation time means the time elapsed from popping
out the first element from a given stack until the end of processing the last element in
the same stack. The obtained results are shown in Table 1. Since the sparse realization
contains five reactions, the procedure FindLinConjWithoutEdge was not called for
sequences with fewer than five nonzero coordinates. This is why stacks with index smaller
than 5 are not included in the table.

6 Conclusions
An algorithm was proposed in this paper for computing all structurally different reaction
graphs describing linearly conjugate realizations of a given kinetic polynomial system.
To the best of the authors’ knowledge this method is the first provably correct solution
for the exhaustive search of CRN structures realizing a given dynamics. The inputs of the

18



Number of threads
1 2 4 6 8 10 12

S(5) 17.667 5.7767 2.6061 1.9417 1.0794 0.91359 0.83738
S(6) 149.11 42.734 19.173 16.935 8.763 7.3073 6.5739
S(7) 762.26 234.79 87.411 100.92 42.237 35.511 31.838
S(8) 4458.7 1233.5 482.81 532.03 236.23 197.91 177.8
S(9) 20355 6247.5 2503.8 2356.1 1278.1 891.4 794.43
S(10) 59492 17246 6921.6 6769.3 3511 2536.5 2248.6
S(11) 1.0534e+05 33706 13570 11661 5982.5 5338.1 3878.8

Stacks S(12) 1.1675e+05 36972 20753 11958 6507.2 5825.6 4253.1
S(13) 83201 25604 14972 8653.4 4572.2 4085.2 3770.1
S(14) 35556 10750 5960.5 3755.5 2126.5 1958.5 1858.1
S(15) 9283.8 3501.6 1737.8 1197.8 787.78 749.61 723.94
S(16) 2015 898.08 478.54 353.27 259.49 246.49 234.34
S(17) 397.5 205.36 125.82 81.447 75.907 57.191 55.652
S(18) 57.236 29.231 17.953 11.173 11.078 8.6908 8.0421
S(19) 4.9291 3.3659 2.7989 2.0673 1.9249 1.8916 1.7575

Table 1: Processing times (in seconds) of the individual stacks in case of Example 2 for
different numbers of threads

algorithm are the complex composition matrix and the coefficient matrix of the studied
polynomial system. The output is the set of all possible reaction graphs encoded by binary
sequences. The correctness of the method is proved using a recent result saying that the
linearly constrained dense realization determines a super-structure among all realizations
fulfilling the same constraints [30]. Although exponentially many different reaction graphs
may exist, it is shown that polynomial time is elapsed between displaying (storing) two
consecutive reaction graphs. The computation starts with the determination of the dense
realization and different stacks are maintained for storing realizations with the same num-
ber of reactions. The number of stacks depends linearly on the number of reactions in the
dense realization, although the entire bookkeeping may require exponential storage space
due to the possible large number of different structures. This organization allows that the
optimization tasks for processing the actual realization (i.e. computing its constrained
immediate ‘successors’) can be implemented parallely. The applicability of the algorithm
is illustrated on two examples taken from the literature. The numerical results show that
parallel implementation indeed improves efficacy of the computation.
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