20 research outputs found

    Comprehensive self-tracking of blood glucose and lifestyle with a mobile application in the management of gestational diabetes : a study protocol for a randomised controlled trial (eMOM GDM study)

    Get PDF
    IntroductionGestational diabetes (GDM) causes various adverse short-term and long-term consequences for the mother and child, and its incidence is increasing globally. So far, the most promising digital health interventions for GDM management have involved healthcare professionals to provide guidance and feedback. The principal aim of this study is to evaluate the effects of comprehensive and real-time self-tracking with eMOM GDM mobile application (app) on glucose levels in women with GDM, and more broadly, on different other maternal and neonatal outcomes.Methods and analysisThis randomised controlled trial is carried out in Helsinki metropolitan area. We randomise 200 pregnant women with GDM into the intervention and the control group at gestational week (GW) 24-28 (baseline, BL). The intervention group receives standard antenatal care and the eMOM GDM app, while the control group will receive only standard care. Participants in the intervention group use the eMOM GDM app with continuous glucose metre (CGM) and activity bracelet for 1 week every month until delivery and an electronic 3-day food record every month until delivery. The follow-up visit after intervention takes place 3 months post partum for both groups. Data are collected by laboratory blood tests, clinical measurements, capillary glucose measures, wearable sensors, air displacement plethysmography and digital questionnaires. The primary outcome is fasting plasma glucose change from BL to GW 35-37. Secondary outcomes include, for example, self-tracked capillary fasting and postprandial glucose measures, change in gestational weight gain, change in nutrition quality, change in physical activity, medication use due to GDM, birth weight and fat percentage of the child.Ethics and disseminationThe study has been approved by Ethics Committee of the Helsinki and Uusimaa Hospital District. The results will be presented in peer-reviewed journals and at conferences.Peer reviewe

    Consumption of differently processed milk products in infancy and early childhood and the risk of islet autoimmunity

    Get PDF
    Several prospective studies have shown an association between cows’ milk consumption and the risk of islet autoimmunity and/or type 1 diabetes. We wanted to study whether processing of milk plays a role. A population-based birth cohort of 6081 children with HLA-DQB1-conferred risk to type 1 diabetes was followed until the age of 15 years. We included 5545 children in the analyses. Food records were completed at the ages of 3 and 6 months and 1, 2, 3, 4 and 6 years, and diabetes-associated autoantibodies were measured at 3–12-month intervals. For milk products in the food composition database, we used conventional and processing-based classifications. We analysed the data using a joint model for longitudinal and time-to-event data. By the age of 6 years, islet autoimmunity developed in 246 children. Consumption of all cows’ milk products together (energy-adjusted hazard ratio 1·06; 95 % CI 1·02, 1·11; P = 0·003), non-fermented milk products (1·06; 95 % CI 1·01, 1·10; P = 0·011) and fermented milk products (1·35; 95 % CI 1·10, 1·67; P = 0·005) was associated with an increased risk of islet autoimmunity. The early milk consumption was not associated with the risk beyond 6 years. We observed no clear differences based on milk homogenisation and heat treatment. Our results are consistent with the previous studies, which indicate that high milk consumption may cause islet autoimmunity in children at increased genetic risk. The study did not identify any specific type of milk processing that would clearly stand out as a sole risk factor apart from other milk products.Peer reviewe

    Consumption of differently processed milk products and the risk of asthma in children

    Get PDF
    Background Consumption of unprocessed cow's milk has been associated with a lower risk of childhood asthma and/or atopy. Not much is known about differently processed milk products. We aimed to study the association between the consumption of differently processed milk products and asthma risk in a Finnish birth cohort. Methods We included 3053 children from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Nutrition Study. Asthma and its subtypes were assessed at the age of 5 years, and food consumption by food records, at the age of 3 and 6 months and 1, 2, 3, 4, and 5 years. We used conventional and processing (heat treatment and homogenization)-based classifications for milk products. The data were analyzed using a joint model for longitudinal and time-to-event data. Results At the age of 5 years, 184 (6.0%) children had asthma, of whom 101 (54.9%) were atopic, 75 (40.8%) were nonatopic, and eight (4.3%) could not be categorized. Consumption of infant formulas [adjusted hazard ratio (95% confidence intervals) 1.15 (1.07, 1.23), p < .001] and strongly heat-treated milk products [1.06 (1.01, 1.10), p = .01] was associated with the risk of all asthma. Consumption of all cow's milk products [1.09 (1.03, 1.15), p = .003], nonfermented milk products [1.08 (1.02, 1.14), p = .008], infant formulas [1.23 (1.13, 1.34), p < .001], and strongly heat-treated milk products [1.08 (1.02, 1.15), p = .006] was associated with nonatopic asthma risk. All these associations remained statistically significant after multiple testing correction. Conclusions High consumption of infant formula and other strongly heat-treated milk products may be associated with the development of asthma

    Maternal gluten, cereal, and dietary fiber intake during pregnancy and lactation and the risk of islet autoimmunity and type 1 diabetes in the child

    Get PDF
    Background &amp; aims: Maternal gluten intake in relation to child's risk of type 1 diabetes has been studied in few prospective studies considering the diet during pregnancy but none during lactation. Our aim was to study whether gluten, cereals, or dietary fiber in maternal diet during pregnancy and lactation is associated with the risk of islet autoimmunity or type 1 diabetes in the offspring. Methods: We included 4943 children with genetic susceptibility to type 1 diabetes from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study, born between 1996 and 2004. Maternal intake of gluten, different types of cereals, and dietary fiber were derived from a semi-quantitative validated food frequency questionnaire covering the eighth month of pregnancy and the third month of lactation. Children were monitored for islet autoantibodies up to age of 15 years and type 1 diabetes until year 2017. Risk of islet autoimmunity and clinical type 1 diabetes were estimated using Cox regression model, adjusted for energy intake, child's sex, HLA genotype, and familial diabetes. Results: Altogether 312 children (6.4%) developed islet autoimmunity at median age of 3.5 (IQR 1.7, 6.6) years and 178 children (3.6%) developed type 1 diabetes at median age of 7.1 (IQR 4.3, 10.6) years. Gluten intake during pregnancy was not associated with islet autoimmunity (HR 0.96; 95% CI 0.68, 1.35), per 1&nbsp;g/MJ increase in intake nor type 1 diabetes (HR 0.96; 95% CI 0.62, 1.50) in the offspring. Higher barley consumption during lactation was associated with increased risk of type 1 diabetes (HR 3.25; 95% CI 1.21, 8.70) per 1&nbsp;g/MJ increase in intake. Maternal intake of other cereals or dietary fiber was not associated with the offspring outcomes. Conclusions: We observed no association between maternal intake of gluten, most consumed cereals, or dietary fiber during pregnancy or lactation and the risk of islet autoimmunity or type 1 diabetes in children from a high-risk population

    Intake and sources of dietary fibre and dietary fibre fractions in Finnish children

    Get PDF
    The current definition of dietary fibre was adopted by the Codex Alimentarius Commission in 2009, but implementation requires updating food composition databases with values based on appropriate analysis methods. Previous data on population intakes of dietary fibre fractions is sparse. We studied the intake and sources of total dietary fibre (TDF) and dietary fibre fractions insoluble dietary fibre (IDF), dietary fibre soluble in water but insoluble in 76% aqueous ethanol (SDFP), and dietary fibre soluble in water and soluble in 76% aqueous ethanol (SDFS) in Finnish children based on new CODEX-compliant values of the Finnish National Food Composition Database Fineli. Our sample included 5193 children at increased genetic risk of type 1 diabetes from the Type 1 Diabetes Prediction and Prevention birth cohort, born between 1996 and 2004. We assessed the intake and sources based on 3-day food records collected at the ages of 6 months, 1, 3, and 6 years. Both absolute and energy-Adjusted intakes of TDF were associated with age, sex, and breastfeeding status of the child. Children of older parents, parents with a higher level of education, non-smoking mothers, and children with no older siblings had higher energy-Adjusted TDF intake. IDF was the major dietary fibre fraction in non-breastfed children, followed by SDFP and SDFS. Cereal products, fruits and berries, potatoes, and vegetables were major food sources of dietary fibre. Breast milk was a major source of dietary fibre in 6-month-olds due to its human milk oligosaccharide content and resulted in high SDFS intakes in breastfed children.publishedVersionPeer reviewe

    Consumption of differently processed milk products and the risk of asthma in children

    Get PDF
    Background Consumption of unprocessed cow's milk has been associated with a lower risk of childhood asthma and/or atopy. Not much is known about differently processed milk products. We aimed to study the association between the consumption of differently processed milk products and asthma risk in a Finnish birth cohort. Methods We included 3053 children from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Nutrition Study. Asthma and its subtypes were assessed at the age of 5 years, and food consumption by food records, at the age of 3 and 6 months and 1, 2, 3, 4, and 5 years. We used conventional and processing (heat treatment and homogenization)-based classifications for milk products. The data were analyzed using a joint model for longitudinal and time-to-event data. Results At the age of 5 years, 184 (6.0%) children had asthma, of whom 101 (54.9%) were atopic, 75 (40.8%) were nonatopic, and eight (4.3%) could not be categorized. Consumption of infant formulas [adjusted hazard ratio (95% confidence intervals) 1.15 (1.07, 1.23), p < .001] and strongly heat-treated milk products [1.06 (1.01, 1.10), p = .01] was associated with the risk of all asthma. Consumption of all cow's milk products [1.09 (1.03, 1.15), p = .003], nonfermented milk products [1.08 (1.02, 1.14), p = .008], infant formulas [1.23 (1.13, 1.34), p < .001], and strongly heat-treated milk products [1.08 (1.02, 1.15), p = .006] was associated with nonatopic asthma risk. All these associations remained statistically significant after multiple testing correction. Conclusions High consumption of infant formula and other strongly heat-treated milk products may be associated with the development of asthma.Peer reviewe

    Intake and sources of dietary fibre and dietary fibre fractions in Finnish children

    No full text
    Abstract The current definition of dietary fibre was adopted by the Codex Alimentarius Commission in 2009, but implementation requires updating food composition databases with values based on appropriate analysis methods. Previous data on population intakes of dietary fibre fractions are sparse. We studied the intake and sources of total dietary fibre (TDF) and dietary fibre fractions insoluble dietary fibre (IDF), dietary fibre soluble in water but insoluble in 76 % aqueous ethanol (SDFP) and dietary fibre soluble in water and soluble in 76 % aqueous ethanol (SDFS) in Finnish children based on new CODEX-compliant values of the Finnish National Food Composition Database Fineli. Our sample included 5193 children at increased genetic risk of type 1 diabetes from the Type 1 Diabetes Prediction and Prevention birth cohort, born between 1996 and 2004. We assessed the intake and sources based on 3-day food records collected at the ages of 6 months, 1, 3 and 6 years. Both absolute and energy-adjusted intakes of TDF were associated with age, sex and breast-feeding status of the child. Children of older parents, parents with a higher level of education, non-smoking mothers and children with no older siblings had higher energy-adjusted TDF intake. IDF was the major dietary fibre fraction in non-breastfed children, followed by SDFP and SDFS. Cereal products, fruits and berries, potatoes and vegetables were major food sources of dietary fibre. Breast milk was a major source of dietary fibre in 6-month-olds due to its human milk oligosaccharide content and resulted in high SDFS intakes in breastfed children
    corecore