146 research outputs found

    Anomalous Paramagnetic Effects in the Mixed State of LuNi2B2C

    Full text link
    Anomalous paramagnetic effects in dc magnetization were observed in the mixed state of LuNi2B2C, unlike any reported previously. It appears as a kink-like feature for H > 30 kOe and becomes more prominent with increasing field. A specific heat jump at the corresponding temperature suggests that the anomaly is due to a true bulk transition. A magnetic flux transition from a square to an hexagonal lattice is consistent with the anomaly.Comment: 5 pages, 4 figure

    Evidence for the Coexistence of Anisotropic Superconducting Gap and Nonlocal Effects in the Non-magnetic Superconductor LuNi2B2C

    Get PDF
    A study of the dependence of the heat capacity Cp(alpha) on field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, Cp(alpha) exhibits a fourfold variation as the field H < Hc2 is rotated in the [001] plane, with minima along (alpha = 0). A slightly disordered sample, however, develops anomalous secondary minima along for H > 1 T, leading to an 8-fold pattern. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and non-local effects.Comment: 5 pages, 4 figure

    Magnetic field dependence of superconducting energy gaps in YNi2B2C: Evidence of multiband superconductivity

    Full text link
    We present results of in field directional point contact spectroscopy (DPCS) study in the quaternary borocarbide superconductor YNi2B2C, which is characterized by a highly anisotropic superconducting gap function. For I||a, the superconducting energy gap (D), decreases linearly with magnetic field and vanishes around 3.25T which is well below the upper critical field (Hc2~6T) measured at the same temperature (2.2K). For I||c, on the other hand, D decreases weakly with magnetic field but the broadening parameter (G) increases rapidly with magnetic field with the absence of any resolvable feature above 3.5T. From an analysis of the field variation of energy gaps and the zero bias density of states we show that the unconventional gap function observed in this material could originate from multiband superconductivity.Comment: 19 pages including figures (final version

    TESS and CHEOPS discover two warm sub-Neptunes transiting the bright K-dwarf HD 15906

    Get PDF
    We report the discovery of two warm sub-Neptunes transiting the bright (G = 9.5 mag) K-dwarf HD 15906 (TOI 461, TIC 4646810). This star was observed by the Transiting Exoplanet Survey Satellite (TESS) in sectors 4 and 31, revealing two small transiting planets. The inner planet, HD 15906 b, was detected with an unambiguous period but the outer planet, HD 15906 c, showed only two transits separated by ∼ 734 d, leading to 36 possible values of its period. We performed follow-up observations with the CHaracterising ExOPlanet Satellite (CHEOPS) to confirm the true period of HD 15906 c and improve the radius precision of the two planets. From TESS, CHEOPS, and additional ground-based photometry, we find that HD 15906 b has a radius of 2.24 ± 0.08 R⊕ and a period of 10.924709 ± 0.000032 d, whilst HD 15906 c has a radius of 2.93+0.07−0.06 R⊕ and a period of 21.583298+0.000052−0.000055 d. Assuming zero bond albedo and full day-night heat redistribution, the inner and outer planet have equilibrium temperatures of 668 ± 13 K and 532 ± 10 K, respectively. The HD 15906 system has become one of only six multiplanet systems with two warm (≲ 700 K) sub-Neptune sized planets transiting a bright star (G ≤ 10 mag). It is an excellent target for detailed characterization studies to constrain the composition of sub-Neptune planets and test theories of planet formation and evolution

    Virtual Recovery of Content from X-Ray Micro-Tomography Scans of Damaged Historic Scrolls

    Get PDF
    Part of this work was carried out with funding from the EPSRC (project EP/G010110/1, High defnition X-ray microtomography and advanced visualisation techniques for information recovery from unopenable historical documents), the China Postdoctoral Innovation Program (No. 230210342) and the China Scholarship Council (File No. 201406020068

    Hidden Magnetism and Quantum Criticality in the Heavy Fermion Superconductor CeRhIn5

    Full text link
    With understood exceptions, conventional superconductivity does not coexist with long-range magnetic order[1]. In contrast, unconventional superconductivity develops near a boundary separating magnetically ordered and magnetically disordered phases[2,3]. A maximum in the superconducting transition temperature Tc develops where this boundary extrapolates to T=0 K, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity[4,5]. Invariably though, unconventional superconductivity hides the magnetic boundary when T < Tc, preventing proof of a magnetic quantum-critical point[5]. Here we report specific heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T->0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model[6,7] developed to explain field-induced magnetism in the high-Tc cuprates but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in cuprate and heavy-electron systems, such as CeRhIn5.Comment: journal reference adde
    • …
    corecore