Abstract

We present results of in field directional point contact spectroscopy (DPCS) study in the quaternary borocarbide superconductor YNi2B2C, which is characterized by a highly anisotropic superconducting gap function. For I||a, the superconducting energy gap (D), decreases linearly with magnetic field and vanishes around 3.25T which is well below the upper critical field (Hc2~6T) measured at the same temperature (2.2K). For I||c, on the other hand, D decreases weakly with magnetic field but the broadening parameter (G) increases rapidly with magnetic field with the absence of any resolvable feature above 3.5T. From an analysis of the field variation of energy gaps and the zero bias density of states we show that the unconventional gap function observed in this material could originate from multiband superconductivity.Comment: 19 pages including figures (final version

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020