31 research outputs found

    Complementarity, completeness and quality of long-term faunal archives in an Asian biodiversity hotspot

    Get PDF
    Long-term baselines on biodiversity change through time are crucial to inform conservation decision-making in biodiversity hotspots, but environmental archives remain unavailable for many regions. Extensive palaeontological, zooarchaeological and historical records and indigenous knowledge about past environmental conditions exist for China, a megadiverse country experiencing large-scale biodiversity loss, but their potential to understand past human-caused faunal turnover is not fully assessed. We investigate a series of complementary environmental archives to evaluate the quality of the Holocene–historical faunal record of Hainan Island, China's southernmost province, for establishing new baselines on postglacial mammalian diversity and extinction dynamics. Synthesis of multiple archives provides an integrated model of long-term biodiversity change, revealing that Hainan has experienced protracted and ongoing human-caused depletion of its mammal fauna from prehistory to the present, and that past baselines can inform practical conservation management. However, China's Holocene–historical archives exhibit substantial incompleteness and bias at regional and country-wide scales, with limited taxonomic representation especially for small-bodied species, and poor sampling of high-elevation landscapes facing current-day climate change risks. Establishing a clearer understanding of the quality of environmental archives in threatened ecoregions, and their ability to provide a meaningful understanding of the past, is needed to identify future conservation-relevant historical research priorities

    Cation Exchange in Smectites as a New Approach to Mineral Carbonation

    Get PDF
    Mineral carbonation of alkaline mine residues is a carbon dioxide removal (CDR) strategy that can be employed by the mining industry. Here, we describe the mineralogy and reactivity of processed kimberlites and kimberlite ore from Venetia (South Africa) and Gahcho KuĂ© (Canada) diamond mines, which are smectite-rich (2.3–44.1 wt.%). Whereas, serpentines, olivines, hydrotalcites and brucite have been traditionally used for mineral carbonation, little is known about the reactivity of smectites to CO2. The smectite from both mines is distributed as a fine-matrix and is saponite, Mx/mm+Mg3(AlxSi4−x)O10(OH)2·nH2O, where the layer charge deficiency is balanced by labile, hydrated interlayer cations (Mm+). A positive correlation between cation exchange capacity and saponite content indicates that smectite is the most reactive phase within these ultramafic rocks and that it can be used as a source of labile Mg2+ and Ca2+ for carbonation reactions. Our work shows that smectites provide the fast reactivity of kimberlite to CO2 in the absence of the highly reactive mineral brucite [Mg(OH)2]. It opens up the possibility of using other, previously inaccessible rock types for mineral carbonation including tailings from smectite-rich sediment-hosted metal deposits and oil sands tailings. We present a decision tree for accelerated mineral carbonation at mines based on this revised understanding of mineralogical controls on carbonation potential

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Formation, reaction rates and stability of hydrotalcite-group minerals: applications for carbon mineralisation

    No full text
    Carbon dioxide emissions into the atmosphere are causing the Earth's climate to change, but they can be removed from the atmosphere and trapped inside some rocks. This thesis investigates a way to trap carbon dioxide in the waste material produced by old mines using a new mineral group that has not been previously trialled

    Comparison of Rietveld-compatible structureless fitting analysis methods for accurate quantification of carbon dioxide fixation in ultramafic mine tailings

    No full text
    The carbonation of ultramafic rocks, including tailings from ultramafic-hosted ore deposits, can be used to remove CO2 from the atmosphere and store it safely within minerals over geologic timescales. Quantitative X-ray diffraction (XRD) using Rietveld refinements can be employed to estimate the amount of carbon sequestered by carbonate minerals that form as a result of weathering of ultramafic rocks. However, the presence of structurally disordered phases such as serpentine minerals, which are common in ultramafic ore bodies such as at the Woodsreef chrysotile mine (New South Wales, Australia), results in samples that cannot be analyzed using typical Rietveld refinement strategies. Previous investigations of carbon sequestration at Woodsreef and other ultramafic mine sites typically used modified Rietveld refinement methods that apply structureless pattern fitting for disordered phases; however, no detailed comparison of the accuracy (or precision) of these methods for carbon accounting has yet been attempted, making it difficult to determine the most appropriate analysis method. Such an analysis would need to test whether some methods more accurately quantify the abundances of certain minerals, such as pyroaurite [Mg6Fe23+(CO3)(OH)(16)center dot 4H(2)O] and other hydrotalcite group minerals, which suffer from severe preferred orientation and may play an important role in carbon sequestration at some mines. Here, we assess and compare the accuracy, and to a lesser extent the precision, of three different non-traditional Rietveld refinement methods for carbon accounting: (1) the PONKCS method, (2) the combined use of a Pawley fit for serpentine minerals and an internal standard (Pawley/internal standard method), and (3) the combined use of PONKCS and Pawley/internal standard methods. We examine which of these approaches represents the most accurate way to quantify the abundances of serpentine, pyroaurite, and other carbonate-bearing phases in a given sample. We demonstrate that by combining the PONKCS and Pawley/internal standard methods it is possible to quantify the abundances of disordered phases in a sample and to obtain an estimate of the amorphous content and any unaccounted intensity in an XRD pattern. Eight artificial tailings samples with known mineralogical compositions were prepared to reflect the natural variation found within the tailings at the Woodsreef chrysotile mine. Rietveld refinement results for the three methods were compared with the known compositions of each sample to calculate absolute and relative error values and to evaluate the accuracy of the three methods, including whether they produce systematic under- or overestimates of mineral abundance. Estimated standard deviations were also calculated during refinements; these values, which are a measure of precision, were not strongly affected by the choice of refinement method. The abundance of serpentine minerals is, however, systematically overestimated when using the PONKCS and Pawley/internal standard methods, and the abundances of minor phases

    Field-based accounting of CO2 sequestration in ultramafic mine wastes using portable X-ray diffraction

    No full text
    Carbon mineralization, the sequestration of carbon within minerals, presents one method through which we could control rising levels of anthropogenic carbon dioxide (CO) emissions. The mineral wastes produced by some ultramafic-hosted mines have the ability to sequester atmospheric CO via passive carbonation reactions. Carbon accounting in mine tailings is typically performed using laboratory-based quantitative X-ray diffraction (XRD) or thermogravimetric methods, which are used to measure the abundances of carbonate-bearing minerals such as hydromagnesite [Mg(CO)(OH)·4HO] and pyroaurite [Mg Fe23+ Fe3+−2\text{Fe}^{3+}-{2} (CO)(OH)·4HO]. The recent development of portable XRD instruments now allows for the characterization and quantification of minerals in the field. Here we assess the feasibility of using a portable XRD instrument for field-based carbon accounting in tailings from the Woodsreef Chrysotile Mine, New South Wales, Australia. Modal mineralogy was obtained by Rietveld refinements of data collected with an inXitu Terra portable XRD. The Partial Or No Known Crystal Structures (PONKCS) method was used to account for turbostratic stacking disorder in serpentine minerals, which are the dominant phases in tailings from Woodsreef. Weighed mixtures of synthetic tailings were made to evaluate the precision and accuracy of quantitative phase analysis using the portable instrument. An average absolute deviation (bias) of 8.2 wt% from the actual composition of the synthetic tailings was found using the portable instrument. This is comparable to the bias obtained using a laboratory-based diffractometer (9.6 wt% absolute) and to the results from previous quantitative XRD studies involving serpentine minerals. The methodology developed using the synthetic tailings was then applied to natural tailings samples from Woodsreef. Surface crusts forming on the tailings pile were found to contain hydromagnesite (∌5.8 wt%) and pyroaurite (∌2.1 wt%). Comparable results were obtained using the laboratory-based instrument and these results are expected to have similar biases to the analyses of the synthetic tailings. These findings demonstrate that portable XRD instruments may be used for field-based measurement of carbon sequestration in minerals in engineered and natural environments

    Accelerating mineral carbonation in ultramafic mine tailings via direct CO2\ua0 reaction and heap leaching with potential for base metal enrichment and recovery

    No full text
    Accelerated carbonation of ultramafic mine tailings has the potential to offset CO2 emissions produced by mining ores from Cu-Ni-platinum group element, podiform chromite, diamondiferous kimberlite, and historical chrysotile deposits. Treatments such as acid leaching, reaction of tailings with elevated concentrations of gaseous CO2, and optimization of tailings pore water saturation have been shown to enhance CO2 sequestration rates in laboratory settings. The next challenge is to deploy treatment technologies on the pilot and field scale while minimizing cost, energy input, and adverse environmental impacts. Implementation of accelerated tailings carbonation at field scale will ideally make use of in situ treatments or modified ore-processing routes that employ conventional technology and expertise and operate at close to ambient temperatures and pressures. Here, we describe column experiments designed to trial two geochemical treatments that address these criteria: (1) direct reaction of partially saturated ultramafic tailings with synthetic flue gas from power generation (10% CO2 in N-2) and (2) repeated heap leaching of ultramafic tailings with dilute sulfuric acid. In the first experiment, we report rapid carbonation of brucite [Mg(OH)(2)] in the presence of 10% CO2 gas within tailings sampled from the Woodsreef chrysotile mine, New South Wales, Australia. Within four weeks, we observe a doubling of the amount of CO2 stored within minerals relative to what is achieved after three decades of passive mineral carbonation via air capture in the field. Our simulated heap leaching experiments, treated daily with 0.08 M H2SO4, produce high-Mg leachates that have the potential to sequester 21.2 kg CO2 m(-2) which is approximately one to two orders of magnitude higher than the rate of passive carbonation of the Wood-sreef mine tailings. Although some nesquehonite (MgCO3 center dot 3H(2)O) forms from these leachates, most of the Mg is precipitated as Mg sulfate minerals instead. Therefore, an acid other than H2SO4 could be used; otherwise, sulfate removal would be required to maximize CO2 sequestration potential from acid heap leaching treatments. Reactive transport modeling (MIN3P) is employed to simulate acid leaching experiments and predict the effects of heap leaching for up to five years. Finally, our synchrotron X-ray fluorescence microscopy results for leached tailings material reveal that valuable trace metals (Fe, Ni, Mn, Co, Cr) become highly concentrated within secondary Fe (hydr)oxide minerals at the pH neutralization horizon within our column experiments. This discrete horizon migrates downward, and our reactive transport models indicate it will become increasingly enriched in first-row transition metals in response to continued acid leaching. Acid-leaching treatments for accelerated mineral carbonation could therefore be useful for ore processing and recovery of base metals from tailings, waste rock, or low-grade ores

    Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada

    No full text
    De Beers kimberlite mine operations in South Africa (Venetia and Voorspoed) and Canada (Gahcho Kué, Victor, and Snap Lake) have the potential to sequester carbon dioxide (CO2) through weathering of kimberlite mine tailings, which can store carbon in secondary carbonate minerals (mineral carbonation). Carbonation of ca. 4.7 to 24.0 wt% (average = 13.8 wt%) of annual processed kimberlite production could offset 100% of each mine siteĂąïżœïżœs carbon dioxide equivalent (CO2e) emissions. Minerals of particular interest for reactivity with atmospheric or waste CO2 from energy production include serpentine minerals, olivine (forsterite), brucite, and smectite. The most abundant minerals, such as serpentine polymorphs, provide the bulk of the carbonation potential. However, the detection of minor amounts of highly reactive brucite in tailings from Victor, as well as the likely presence of brucite at Venetia, Gahcho Kué, and Snap Lake, is also important for the mineral carbonation potential of the mine sites.</p
    corecore