14 research outputs found

    Investigating the Atmospheric Mass Loss of the Kepler-105 Planets Straddling the Radius Gap

    Full text link
    An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.51.5 R_\oplus and 2.02.0 R_\oplus. One proposed explanation for this "radius gap" is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an ideal system for such testing due to the ordering and sizes of its planets. Kepler-105 is a sun-like star that hosts two planets straddling the radius gap in a rare architecture with the larger planet closer to the host star (Rb=2.53±0.07R_b = 2.53\pm0.07 R_\oplus, Pb=5.41P_b = 5.41 days, Rc=1.44±0.04R_c = 1.44\pm0.04 R_\oplus, Pc=7.13P_c = 7.13 days). If photoevaporation sculpted the atmospheres of these planets, then Kepler-105b would need to be much more massive than Kepler-105c to retain its atmosphere, given its closer proximity to the host star. To test this hypothesis, we simultaneously analyzed radial velocities (RVs) and transit timing variations (TTVs) of the Kepler-105 system, measuring disparate masses of Mb=10.8±2.3M_b = 10.8\pm2.3 M_\oplus (ρb=0.97±0.22 \rho_b = 0.97\pm0.22 g cm3^{-3}) and Mc=5.6±1.2M_c = 5.6\pm1.2 M_\oplus (ρc=2.64±0.61\rho_c = 2.64\pm0.61 g cm3^{-3}). Based on these masses, the difference in gas envelope content of the Kepler-105 planets could be entirely due to photoevaporation (in 76\% of scenarios), although other mechanisms like core-powered mass loss could have played a role for some planet albedos.Comment: 14 pages, 3 figures, 2 table

    The TESS-Keck Survey: Science Goals and Target Selection

    Full text link
    Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.Comment: 23 pages, 10 figures, 5 table

    The TESS-Keck Survey. XV. Precise Properties of 108 TESS Planets and Their Host Stars

    Full text link
    We present the stellar and planetary properties for 85 TESS Objects of Interest (TOIs) hosting 108 planet candidates which comprise the TESS-Keck Survey (TKS) sample. We combine photometry, high-resolution spectroscopy, and Gaia parallaxes to measure precise and accurate stellar properties. We then use these parameters as inputs to a lightcurve processing pipeline to recover planetary signals and homogeneously fit their transit properties. Among these transit fits, we detect significant transit-timing variations among at least three multi-planet systems (TOI-1136, TOI-1246, TOI-1339) and at least one single-planet system (TOI-1279). We also reduce the uncertainties on planet-to-star radius ratios Rp/RR_p/R_\star across our sample, from a median fractional uncertainty of 8.8%\% among the original TOI Catalog values to 3.0%\% among our updated results. With this improvement, we are able to recover the Radius Gap among small TKS planets and find that the topology of the Radius Gap among our sample is broadly consistent with that measured among Kepler planets. The stellar and planetary properties presented here will facilitate follow-up investigations of both individual TOIs and broader trends in planet properties, system dynamics, and the evolution of planetary systems.Comment: Accepted at The Astronomical Journal; 21 pages, 9 figure

    The TESS-Keck Survey. XII. A Dense 1.8 R ⊕ Ultra-short-period Planet Possibly Clinging to a High-mean-molecular-weight Atmosphere after the First Gigayear

    Get PDF
    The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8±0.1 R⊕ planet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1±1.2 M⊕. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (&gt;0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which if confirmed could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition

    Stability and detectability of exomoons orbiting HIP 41378 f, a temperate Jovian planet with an anomalously low apparent density

    Get PDF
    Moons orbiting exoplanets (“exomoons”) may hold clues about planet formation, migration, and habitability. In this work, we investigate the plausibility of exomoons orbiting the temperate (T eq = 294 K) giant (R = 9.2 R ⊕) planet HIP 41378 f, which has been shown to have a low apparent bulk density of 0.09 g cm−3 and a flat near-infrared transmission spectrum, hinting that it may possess circumplanetary rings. Given this planet’s long orbital period (P ≈ 1.5 yr), it has been suggested that it may also host a large exomoon. Here, we analyze the orbital stability of a hypothetical exomoon with a satellite-to-planet mass ratio of 0.0123 orbiting HIP 41378 f. Combining a new software package, astroQTpy, with REBOUND and EqTide, we conduct a series of N-body and tidal migration simulations, demonstrating that satellites up to this size are largely stable against dynamical escape and collisions. We simulate the expected transit signal from this hypothetical exomoon and show that current transit observations likely cannot constrain the presence of exomoons orbiting HIP 41378 f, though future observations may be capable of detecting exomoons in other systems. Finally, we model the combined transmission spectrum of HIP 41378 f and a hypothetical moon with a low-metallicity atmosphere and show that the total effective spectrum would be contaminated at the ∼10 ppm level. Our work not only demonstrates the feasibility of exomoons orbiting HIP 41378 f but also shows that large exomoons may be a source of uncertainty in future high-precision measurements of exoplanet systems

    The First Near-infrared Transmission Spectrum of HIP 41378 f, A Low-mass Temperate Jovian World in a Multiplanet System

    Get PDF
    Abstract: We present a near-infrared transmission spectrum of the long-period (P = 542 days), temperate (T eq = 294 K) giant planet HIP 41378 f obtained with the Wide-Field Camera 3 instrument aboard the Hubble Space Telescope (HST). With a measured mass of 12 ± 3 M ⊕ and a radius of 9.2 ± 0.1 R ⊕, HIP 41378 f has an extremely low bulk density (0.09 ± 0.02 g cm−3). We measure the transit depth with a median precision of 84 ppm in 30 spectrophotometric channels with uniformly sized widths of 0.018 μm. Within this level of precision, the spectrum shows no evidence of absorption from gaseous molecular features between 1.1 and 1.7 μm. Comparing the observed transmission spectrum to a suite of 1D radiative-convective-thermochemical-equilibrium forward models, we rule out clear, low-metallicity atmospheres and find that the data prefer high-metallicity atmospheres or models with an additional opacity source, such as high-altitude hazes and/or circumplanetary rings. We explore the ringed scenario for HIP 41378 f further by jointly fitting the K2 and HST light curves to constrain the properties of putative rings. We also assess the possibility of distinguishing between hazy, ringed, and high-metallicity scenarios at longer wavelengths with the James Webb Space Telescope. HIP 41378 f provides a rare opportunity to probe the atmospheric composition of a cool giant planet spanning the gap in temperature, orbital separation, and stellar irradiation between the solar system giants, directly imaged planets, and the highly irradiated hot Jupiters traditionally studied via transit spectroscopy

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246

    Get PDF
    Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V=11.6, K=9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31 d, 5.90 d, 18.66 d, and 37.92 d. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97±0.06 R⊕,2.47±0.08 R⊕,3.46±0.09 R⊕, 3.72±0.16 R⊕), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1±1.1M⊕, 8.8±1.2M⊕, 5.3±1.7M⊕, 14.8±2.3M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd=2.03) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70±0.24 to 3.21±0.44g/cm3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI–1246

    No full text
    Full list of authors: Turtelboom, Emma V.; Weiss, Lauren M.; Dressing, Courtney D.; Nowak, Grzegorz; Pallé, Enric; Beard, Corey; Blunt, Sarah; Brinkman, Casey; Chontos, Ashley; Claytor, Zachary R.; Dai, Fei; Dalba, Paul A.; Giacalone, Steven; Gonzales, Erica; Harada, Caleb K.; Hill, Michelle L.; Holcomb, Rae; Korth, Judith; Lubin, Jack; Masseron, Thomas; MacDougall, Mason; Mayo, Andrew W.; Močnik, Teo; Akana Murphy, Joseph M.; Polanski, Alex S.; Rice, Malena; Rubenzahl, Ryan A.; Scarsdale, Nicholas; Stassun, Keivan G.; Tyler, Dakotah B.; Zandt, Judah Van; Crossfield, Ian J. M.; Deeg, Hans J.; Fulton, Benjamin; Gandolfi, Davide; Howard, Andrew W.; Huber, Dan; Isaacson, Howard; Kane, Stephen R.; Lam, Kristine W. F.; Luque, Rafael; Martín, Eduardo L.; Morello, Giuseppe; Orell-Miquel, Jaume; Petigura, Erik A.; Robertson, Paul; Roy, Arpita; Van Eylen, Vincent; Baker, David; Belinski, Alexander A.; Bieryla, Allyson; Ciardi, David R.; Collins, Karen A.; Cutting, Neil; Della-Rose, Devin J.; Ellingsen, Taylor B.; Furlan, E.; Gan, Tianjun; Gnilka, Crystal L.; Guerra, Pere; Howell, Steve B.; Jimenez, Mary; Latham, David W.; Larivière, Maude; Lester, Kathryn V.; Lillo-Box, Jorge; Luker, Lindy; Mann, Christopher R.; Plavchan, Peter P.; Safonov, Boris; Skinner, Brett; Strakhov, Ivan A.; Wittrock, Justin M.; Caldwell, Douglas A.; Essack, Zahra; Jenkins, Jon M.; Quintana, Elisa V.; Ricker, George R.; Vanderspek, Roland; Seager, S.; Winn, Joshua N.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 ± 0.06 R⊕, 2.47 ± 0.08 R⊕, 3.46 ± 0.09 R⊕, and 3.72 ± 0.16 R⊕) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 ± 1.1 M⊕, 8.8 ± 1.2 M⊕, 5.3 ± 1.7 M⊕, and 14.8 ± 2.3 M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 ± 0.24 to 3.21 ± 0.44 g cm−3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature. © 2022. The Author(s). Published by the American Astronomical Society.We thank the time assignment committees of the University of California, the California Institute of Technology, NASA, and the University of Hawaii for supporting the TESS-Keck Survey with observing time at Keck Observatory. We thank NASA for funding associated with our Key Strategic Mission Support project. We gratefully acknowledge the efforts and dedication of the Keck Observatory staff for support of HIRES and remote observing. We recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has within the indigenous Hawaiian community. We are deeply grateful to have the opportunity to conduct observations from this mountain. We thank Ken and Gloria Levy, who supported the construction of the Levy Spectrometer on the Automated Planet Finder. We thank the University of California and Google for supporting Lick Observatory, and the UCO staff for their dedicated work scheduling and operating the telescopes of Lick Observatory. This paper is based on data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. C.D. gratefully acknowledges support from the David & Lucile Packard Foundation and the Alfred P. Sloan Foundation. A.A.B., B.S.S., and I.A.S. acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780(N13.1902.21.0039). J.K. gratefully acknowledges the support of the Swedish National Space Agency (SNSA; DNR 2020-00104). A.W.M. is supported by the NSF Graduate Research Fellowship grant No. DGE 1752814. J.M.A.M. is supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1842400. J.M.A.M. acknowledges the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining grant No. 1829740, the Brinson Foundation, and the Moore Foundation; his participation in the program has benefited this work. C.K.H. acknowledges support from the National Science Foundation Graduate Research Fellowship Program under grant No. DGE 2146752. M.R. is supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1752134. R.A.R. is supported by an NSF Graduate Research Fellowship, grant No. DGE 1745301. P.D. is supported by a National Science Foundation (NSF) Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1903811. R.L. acknowledges financial support from the Centre of Excellence "Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). D.H. acknowledges support from the Alfred P. Sloan Foundation and the National Aeronautics and Space Administration (80NSSC20K0593, 80NSSC21K0652). T.M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) through the Spanish State Research Agency, under the Severo Ochoa Program 2020-2023 (CEX2019-000920-S). K.W.F.L. acknowledges support by DFG grants RA714/14-1 within the DFG Schwerpunkt SPP 1992, "Exploring the Diversity of Extrasolar Planets."Peer reviewe

    The TESS-Keck Survey. XV. Precise Properties of 108 TESS Planets and Their Host Stars

    No full text
    We present the stellar and planetary properties for 85 TESS Objects of Interest (TOIs) hosting 108 planet candidates that compose the TESS-Keck Survey (TKS) sample. We combine photometry, high-resolution spectroscopy, and Gaia parallaxes to measure precise and accurate stellar properties. We then use these parameters as inputs to a light-curve processing pipeline to recover planetary signals and homogeneously fit their transit properties. Among these transit fits, we detect significant transit-timing variations among at least three multiplanet systems (TOI-1136, TOI-1246, TOI-1339) and at least one single-planet system (TOI-1279). We also reduce the uncertainties on planet-to-star radius ratios R _p / R _⋆ across our sample, from a median fractional uncertainty of 8.8% among the original TOI Catalog values to 3.0% among our updated results. With this improvement, we are able to recover the Radius Gap among small TKS planets and find that the topology of the Radius Gap among our sample is broadly consistent with that measured among Kepler planets. The stellar and planetary properties presented here will facilitate follow-up investigations of both individual TOIs and broader trends in planet properties, system dynamics, and the evolution of planetary systems
    corecore