794 research outputs found

    Visual Field Progression in Glaucoma: Comparison Between PoPLR and ANSWERS

    Get PDF
    Purpose: It has been suggested that the detection of visual field progression can be improved by modeling statistical properties of the data such as the increasing retest variability and the spatial correlation among visual field locations. We compared a method that models those properties, Analysis with Non-Stationary Weibull Error Regression and Spatial Enhancement (ANSWERS), against a simpler one that does not, Permutation of Pointwise Linear Regression (PoPLR). Methods: Visual field series from three independent longitudinal studies in patients with glaucoma were used to compare the positive rate of PoPLR and ANSWERS. To estimate the false-positive rate, the same visual field series were randomly re-ordered in time. The first dataset consisted of series of 7 visual fields from 101 eyes, the second consisted of series of 9 visual fields from 150 eyes, and the third consisted of series of more than 9 visual fields (17.5 on average) from 139 eyes. Results: For a statistical significance of 0.05, the false-positive rates for ANSWERS were about 3 times greater than expected at 15%, 17%, and 16%, respectively, whereas for PoPLR they were 7%, 3%, and 6%. After equating the specificities at 0.05 for both models, positive rates for ANSWERS were 16%, 25%, and 38%, whereas for PoPLR they were 12%, 33%, and 49%, or about 5% greater on average (95% confidence interval = -1% to 11%). Conclusions: Despite being simpler and less computationally demanding, PoPLR was at least as sensitive to deterioration as ANSWERS once the specificities were equated. Translational Relevance: Close control of false-positive rates is key when visual fields of patients are analyzed for change in both clinical practice and clinical trials

    Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A

    Get PDF
    We present observations of the possible short GRB 180418A in γ\gamma-rays, X-rays, and in the optical. Early optical photometry with the TAROT and RATIR instruments show a bright peak (≈\approx 14.2 AB mag) between T+28T+28 and T+90T+90 seconds that we interpret as the signature of a reversal shock. Later observations can be modeled by a standard forward shock model and show no evidence of jet break, allowing us to constrain the jet collimation to ξj>7∘\theta_j> 7^\circ. Using deep late-time optical observations we place an upper limit of r>24r>24 AB mag on any underlying host galaxy. The detection of the afterglow in the \textit{Swift} UV filters constrains the GRB redshift to z<1.3z<1.3 and places an upper bound on the γ\gamma-ray isotropic equivalent energy Eγ,iso<3×1051E_{\rm{\gamma,iso}} < 3 \times 10^{51} erg. The properties of this GRB (e.g. duration, hardness ratio, energetic, and environment) lie at the intersection between short and long bursts, and we can not conclusively identify its type. We estimate that the probability that it is drawn from the population of short GRBs is 10\%-30\%.Comment: Accepted por publication in Ap

    Data obtained with an open-source static automated perimetry test of the full visual field in healthy adults

    Get PDF
    The data were gathered from 98 eyes of 98 ocular healthy subjects. The subject ages ranged from 18 to 79 years with a mean (and standard deviation) of 47 (17) years. Each subject underwent two visual field tests, one of the central visual field (64 locations within 26° of fixation) and one of the peripheral visual field (64 locations with eccentricity from 26° to up to 81°). Luminance thresholds for the Goldmann size V stimulus (with a diameter of 1.72° of visual angle) were obtained with the ZEST Bayesian test procedure. Each test was conducted twice within 90 days

    Transitioning to adulthood with a mild intellectual disability: Young people's experiences, expectations, and aspirations

    Get PDF
    Aim: Very little attention has been paid to the views and experiences of young people with mild intellectual disabilities on the broad topics of adulthood and adult identity. The following study was undertaken to explore how young adults with mild intellectual disabilities conceptualize, relate to, and experience the process of transition. Method: Eight young adults with mild to borderline intellectual disabilities participated in semi‐structured interviews. Results were analysed using interpretive thematic analysis. Results: Two umbrella themes were identified: “On a developmental pathway” and “Negotiations in the environment”. Conclusions: The participants concerns were surprisingly similar to those commonly expressed by young adults without disabilities. Self‐perceived adult identity appeared to be affected by the participants' personal definitions of adulthood, as well as by social comparisons with both peers and adults. Finally, while concerns were expressed about their capacity to cope with responsibility, most felt optimistic about adopting full adult status in the future

    Simulation of growth and development of diverse legume species in APSIM

    Get PDF
    This paper describes the physiological basis and validation of a generic legume model as it applies to 4 species: chickpea (Cicer arietinum L.), mungbean (Vigna radiata (L.) Wilczek), peanut (Arachis hypogaeaL.), and lucerne (Medicago sativa L.). For each species, the key physiological parameters were derived from the literature and our own experimentation. The model was tested on an independent set of experiments, predominantly from the tropics and subtropics of Australia, varying in cultivar, sowing date, water regime (irrigated or dryland), row spacing, and plant population density. The model is an attempt to simulate crop growth and development with satisfactory comprehensiveness, without the necessity of defining a large number of parameters. A generic approach was adopted in recognition of the common underlying physiology and simulation approaches for many legume species. Simulation of grain yield explained 77, 81, and 70% of the variance (RMSD = 31, 98, and 46 g/m2) for mungbean (n = 40, observed mean = 123 g/m2), peanut (n = 30, 421 g/m2), and chickpea (n = 31, 196 g/m2), respectively. Biomass at maturity was simulated less accurately, explaining 64, 76, and 71% of the variance (RMSD = 134, 236, and 125 g/m2) for mungbean, peanut, and chickpea, respectively. RMSD for biomass in lucerne (n = 24) was 85 g/m2 with an R2 of 0.55. Simulation accuracy is similar to that achieved by single-crop models and suggests that the generic approach offers promise for simulating diverse legume species without loss of accuracy or physiological rigour
    • 

    corecore