12 research outputs found

    Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators

    Get PDF
    Aim Introduced predators negatively impact biodiversity globally, with insular fauna often most severely affected. Here, we assess spatial variation in the number of terrestrial vertebrates (excluding amphibians) killed by two mammalian mesopredators introduced to Australia, the red fox (Vulpes vulpes) and feral cat (Felis catus). We aim to identify prey groups that suffer especially high rates of predation, and regions where losses to foxes and/or cats are most substantial. Location Australia. Methods We draw information on the spatial variation in tallies of reptiles, birds and mammals killed by cats in Australia from published studies. We derive tallies for fox predation by (i) modelling continental-scale spatial variation in fox density, (ii) modelling spatial variation in the frequency of occurrence of prey groups in fox diet, (iii) analysing the number of prey individuals within dietary samples and (iv) discounting animals taken as carrion. We derive point estimates of the numbers of individuals killed annually by foxes and by cats and map spatial variation in these tallies. Results Foxes kill more reptiles, birds and mammals (peaking at 1071 km−2 year−1) than cats (55 km−2 year−1) across most of the unmodified temperate and forested areas of mainland Australia, reflecting the generally higher density of foxes than cats in these environments. However, across most of the continent – mainly the arid central and tropical northern regions (and on most Australian islands) – cats kill more animals than foxes. We estimate that foxes and cats together kill 697 million reptiles annually in Australia, 510 million birds and 1435 million mammals. Main conclusions This continental-scale analysis demonstrates that predation by two introduced species takes a substantial and ongoing toll on Australian reptiles, birds and mammals. Continuing population declines and potential extinctions of some of these species threatens to further compound Australia's poor contemporary conservation record

    Data from: New populations of the black-flanked rock-wallaby (Petrogale lateralis) from the Little Sandy Desert and Murchison, Western Australia

    No full text
    During two independent fauna surveys, rock-wallaby (Petrogale) scats were recorded from caves located outside the current known Petrogale distribution. Scats collected from Desert Queen Baths (Little Sandy Desert, Western Australia, 2012), and the Barr Smith Range (Murchison, Western Australia, 2015) were genetically analysed and a follow-up motion camera survey confirmed an extant rock-wallaby population at Desert Queen Baths. The combination of sampling techniques overcame the detection difficulties associated with rare and cryptic taxa, and together were important in establishing the presence of Petrogale lateralis from regions where the species has been poorly documented. At both locations, P. lateralis scats were recorded from deep caves situated close to permanent water, reflecting the species’ physiological constraints in the arid zone. These records represent significant range extensions of a highly threatened macropod

    Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia

    Full text link
    Abstract Context Recent global concern over invertebrate declines has drawn attention to the causes and consequences of this loss of biodiversity. Feral cats, Felis catus, pose a major threat to many vertebrate species in Australia, but their effect on invertebrates has not previously been assessed.Aims The objectives of our study were to (1) assess the frequency of occurrence (FOO) of invertebrates in feral cat diets across Australia and the environmental and geographic factors associated with this variation, (2) estimate the number of invertebrates consumed by feral cats annually and the spatial variation of this consumption, and (3) interpret the conservation implications of these results.Methods From 87 Australian cat-diet studies, we modelled the factors associated with variation in invertebrate FOO in feral cat-diet samples. We used these modelled relationships to predict the number of invertebrates consumed by feral cats in largely natural and highly modified environments.Key results In largely natural environments, the mean invertebrate FOO in feral cat dietary samples was 39% (95% CI: 31&ndash;43.5%), with Orthoptera being the most frequently recorded order, at 30.3% (95% CI: 21.2&ndash;38.3%). The highest invertebrate FOO occurred in lower-rainfall areas with a lower mean annual temperature, and in areas of greater tree cover. Mean annual invertebrate consumption by feral cats in largely natural environments was estimated to be 769 million individuals (95% CI: 422&ndash;1763 million) and in modified environments (with mean FOO of 27.8%) 317 million invertebrates year&minus;1, giving a total estimate of 1086 million invertebrates year&minus;1 consumed by feral cats across the continent.Conclusions The number of invertebrates consumed by feral cats in Australia is greater than estimates for vertebrate taxa, although the biomass (and, hence, importance for cat diet) of invertebrates taken would be appreciably less. The impact of predation by cats on invertebrates is difficult to assess because of the lack of invertebrate population and distribution estimates, but cats may pose a threat to some large-bodied narrowly restricted invertebrate species.Implications Further empirical studies of local and continental invertebrate diversity, distribution and population trends are required to adequately contextualise the conservation threat posed by feral cats to invertebrates across Australia.</div

    Sharing meals: Predation on Australian mammals by the introduced European red fox compounds and complements predation by feral cats

    No full text
    Two introduced carnivores, the European red fox Vulpes vulpes and domestic cat Felis catus, have had, and continue to have, major impacts on wildlife, particularly mammals, across Australia. Based mainly on the contents of almost 50,000 fox dietary samples, we provide the first comprehensive inventory of Australian mammal species known to be consumed by foxes, and compare this with a similar assessment for cats. We recorded consumption by foxes of 114 species of Australian land mammal (40% of extant species), fewer than consumed by cats (173 species). Foxes are known to consume 42 threatened mammal species (50% of Australia's threatened land mammals and 66% of those within the fox's Australian range). Reflecting the importance of mammals in their diet, foxes are known to consume a far higher proportion of Australian mammal species (40%) than of Australian birds (24%) and reptiles (16%). Both foxes and cats were most likely to consume medium-sized mammals, with the likelihood of predation by foxes peaking for mammals of ca. 280 g and by cats at ca. 130 g. For non-flying mammals, threatened species had a higher relative likelihood of predation by foxes than non-threatened species. Using trait-based modelling, we estimate that many now-extinct Australian mammal species had very high likelihoods of predation by foxes and cats, although we note that for some of these species, extinction likely pre-dated the arrival of foxes. These two predators continue to have compounding and complementary impacts on Australian mammals. Targeted and integrated management of foxes and cats is required to help maintain and recover the Australian mammal fauna
    corecore