337 research outputs found
Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts
Infectious diseases (exacerbated by antimicrobial resistance) cause death, loss of quality of life and economic burden globally. Materials with inherent antimicrobial properties offer the potential to reduce the spread of infection through transfer via surfaces or solutions, or to directly reduce microbial numbers in a host if used as implants. Additive Manufacturing (AM) techniques offer shorter supply chains, faster delivery, mass customisation and reduced unit costs, as well as highly complicated part geometries which are potentially harder to clean and sterilise. Here, we present a new approach to introducing antibacterial properties into AM, using Laser Sintering, by combining antimicrobial and base polymer powders prior to processing. We demonstrate that the mechanical properties of the resultant composite parts are similar to standard polymer parts and reveal the mode of the antibacterial activity. We show that antibacterial activity is modulated by the presence of obstructing compounds in different experimental media, which will inform appropriate use cases. We show that the material is not toxic to mammalian cells. This material could be quickly used for commercial products, and our approach could be adopted more generally to add new functionality to Laser Sintered parts
Multifunctional copper-containing mesoporous glass nanoparticles as antibacterial and proangiogenic agents for chronic wounds
The physiological wound healing process involves a cascade of events which could be affected by several factors resulting in chronic, non-healing wounds. The latter represent a great burden especially when bacterial biofilms are formed. The rise in antibiotic resistance amongst infectious microorganisms leads to the need of novel approaches to treat this clinical issue. In this context, the use of advanced biomaterials, which can enhance the physiological expression and secretion of the growth factors involved in the wound healing process, is gaining increasing attention as a robust and appealing alternative approach. Among them, mesoporous glasses are of particular interest due to their excellent textural properties and to the possibility of incorporating and releasing specific therapeutic species, such as metallic ions. One of the most attractive therapeutic ions is copper thanks to its proangiogenic and antibacterial effects. In this contribution, copper containing mesoporous glass nanoparticles were proposed as a multifunctional device to treat chronic wounds. The developed nanoparticles evidenced a very high specific surface area (740 m2/g), uniform pores of 4 nm and an almost total release of the therapeutic ion within 72 h of soaking. The produced nanoparticles were biocompatible and, when tested against Gram positive and Gram negative bacterial species, demonstrated antibacterial activity against both planktonic and biofilm bacteria in 2D cell monolayers, and in a 3D human model of infected skin. Their proangiogenic effect was tested with both the aortic ring and the chick chorioallantoic membrane assays and an increase in endothelial cell outgrowth at a concentration range between 30 and 300 ng/mL was shown. Overall, in this study biocompatible, multifunctional Cu-containing mesoporous glass nanoparticles were successfully produced and demonstrated to exert both antibacterial and proangiogenic effects
Latest results on Jovian disk X-rays from XMM-Newton
We present the results of a spectral study of the soft X-ray emission
(0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were
obtained during two observing campaigns with XMM-Newton in April and November
2003. While the level of the emission remained approximately the same between
April and the first half of the November observation, the second part of the
latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very
similar, and apparently correlated increase, in time and scale, was observed in
the solar X-ray and EUV flux.
The months of October and November 2003 saw a period of particularly intense
solar activity, which appears reflected in the behaviour of the soft X-rays
from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras,
are all well fitted by a coronal model with temperatures in the range 0.4-0.5
keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86
keV): these are characteristic lines of solar X-ray spectra at maximum activity
and during flares.
The XMM-Newton observations lend further support to the theory that Jupiter's
disk X-ray emission is controlled by the Sun, and may be produced in large part
by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere
of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of
Planetary and Space Scienc
Stronger computational modelling of signalling pathways using both continuous and discrete-state methods
Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results
Gravity and Electromagnetism with -type Coupling and Magnetic Monopole Solutions
We investigate -type coupling of electromagnetic fields to
gravity. After we derive field equations by a first order variational principle
from the Lagrangian formulation of the non-minimally coupled theory, we look
for static, spherically symmetric, magnetic monopole solutions. We point out
that the solutions can provide possible geometries which may explain the
flatness of the observed rotation curves of galaxies.Comment: 10 page
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
The long-term fate of permafrost peatlands under rapid climate warming
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms
Peatland pools are tightly coupled to the contemporary carbon cycle
Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2) and methane (CH4). The radiocarbon content (14C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14C and stable C (δ13C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2. Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%–75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export
- …