602 research outputs found

    Motor units as tools to evaluate profile of human Renshaw inhibition

    Get PDF
    Although Renshaw inhibition (RI) has been extensively studied for decades, its precise role in motor control is yet to be discovered. One of the main handicaps is a lack of reliable methods for studying RI in conscious human subjects. We stimulated the lowest electrical threshold motor axons (thickest axons) in the tibial nerve and analysed the stimulus‐correlated changes in discharge of voluntarily recruited low‐threshold single motor units (SMUs) from the soleus muscle. In total, 54 distinct SMUs from 12 subjects were analysed. Stimuli that generated only the direct motor response (M‐only) on surface electromyography induced an inhibitory response in the low‐threshold SMUs. Because the properties of RI had to be estimated indirectly using the background discharge rate of SMUs, its profile varied with the discharge rate of the SMU. The duration of RI was found to be inversely proportional to the discharge rate of SMUs. Using this important finding, we have developed a method of extrapolation for estimating RI as it develops on motoneurons in the spinal cord. The frequency methods indicated that the duration of RI was between 30 and 40 ms depending on the background firing rate of the units, and the extrapolation indicated that RI on silent motoneurons was ∼55 ms. The present study establishes a novel methodology for studying RI in human subjects and hence may serve as a tool for improving our understanding of the involvement of RI in human motor control

    Raman Enhancement on a Broadband Meta-Surface

    Get PDF
    Cataloged from PDF version of article.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material

    Grating coupler integrated photodiodes for plasmon resonance based sensing

    Get PDF
    Cataloged from PDF version of article.In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 x 10(-6) RIU/root Hz is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 x 10(-9) RIU/root Hz. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed

    Adaptive plasticity in the healthy reading network investigated through combined neurostimulation and neuroimaging

    Get PDF
    The reading network in the human brain comprises several regions, including the left inferior frontal cortex (IFC), ventral occipito-temporal cortex (vOTC) and dorsal temporo-parietal cortex (TPC). The left TPC is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings. Here, we tested the causal contribution of this area for reading with repetitive transcranial magnetic stimulation (rTMS) and explored the response of the reading network using functional magnetic resonance imaging (fMRI). 28 healthy adult readers overtly read simple and complex words and pseudowords during fMRI after effective or sham TMS over the left TPC. Behaviorally, effective stimulation slowed pseudoword reading. A multivariate pattern analysis showed a shift in activity patterns in the left IFC for pseudoword reading after effective relative to sham TMS. Furthermore, active TMS led to increased effective connectivity from the left vOTC to the left TPC, specifically for pseudoword processing. The observed changes in task-related activity and connectivity suggest compensatory reorganization in the reading network following TMS-induced disruption of the left TPC. Our findings provide first evidence for a causal role of the left TPC for overt pseudoword reading and emphasize the relevance of functional interactions in the healthy reading network for successful pseudoword processing

    Short-term plasticity of neuro-auditory processing induced by musical active listening training

    Get PDF
    Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing

    Plasmonic absorbers for multispectral and broadband absorption

    Get PDF
    We present polarization dependent multispectral and broadband plasmonic absorbers in the visible spectrum. The spectral characteristics of these structures are tunable over a broad spectrum. Experimental results are verified with the FDTD and RCWA analysis methods. These structures are used as surface enhanced raman spectroscopy(SERS) substrates. Designed structures have resonances that span the Raman Stokes and excitation wavelength. Such structures can be used for energy, LED and other spectroscopy applications. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE)

    Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    Get PDF
    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ∼105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. © 2015, Nature Publishing Group. All rights reserved

    Grating coupler integrated photodiodes for plasmon resonance based sensing

    Get PDF
    In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 × 10 -6 is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 × 10-9. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed. © 2011 The Royal Society of Chemistry

    Grating coupler integrated photodiodes for plasmon resonance based sensing in fluidic systems

    Get PDF
    We demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism and monitored via the integrated photodiode. © 2011 OSA
    corecore