15 research outputs found

    Primordial nuclides and low-level counting at Felsenkeller

    Get PDF
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its crosssection in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide.Innerhalb der Kosmologie gibt es zwei völlig unabhängige Ansätze, die gemeinsam die Präzision in diesem Gebiet weiter vorantreiben können: Astronomische Beobachtungen der primordialen Elementhäufigkeiten und die detaillierte Vermessung des kosmischen Mikrowellenhintergrunds. Dieses Vorhaben wird derzeit allerdings noch durch die vergleichsweise große Unsicherheit des kernphysikalischen Inputs verhindert, vor allem bedingt durch das limitierte Verständnis der 2H(p,γ)3He-Reaktion. Eine präzise Vermessung dieser Reaktion ist sowohl für die Präzisionsdaten zur primordialen Nukleosynthese erforderlich, als auch für die damit einhergehende unabhängige Bestimmung der kosmologischen Baryonendichte. Des Weiteren ist unsere Sonne ein exzellent geeignetes Objekt, um unser theoretisches Verständnis über die Physik von Sternen mit experimentellen Messungen abgleichen zu können. Während wir heutzutage in der Lage sind, solare Neutrinos in Echtzeit auf der Erde messen können, mangelt es noch an der theoretischen Vorhersagekraft von solaren Neutrinoflüssen. Auch hier ist die Präzision (erneut) begrenzt durch das limitierte Verständnis der beteiligten Kernreaktionen, vor allem bedingt durch mangelnde Kenntnis über die 3He(α,γ)7Be-Reaktion. Die vorliegende Arbeit beleuchtet diese zwei Kernreaktionen, die beide unser Verständnis des Universums auf verschiedene Weise einschränken. Während sich die Untersuchung der 2H(p,γ)3He-Reaktion auf die Bestimmung ihres Wirkungsquerschnitts in der Nähe des Gamow-Fensters für die Urknall-Nukleosynthese konzentriert, ist das Hauptanliegen für die 3He(α,γ)7Be-Reaktion eine Messung der Winkelverteilung der dabei emittierten γ-Strahlung bei astrophysikalisch relevanten Energien. Darüber hinaus wird über die Installation eines Messaufbaus zur Untersuchung niedriger Aktivitäten berichtet, das sich durch seine äußerst geringe Untergrundzählrate auszeichnet. Bedingt durch seine hohe Sensitivität kann dieser Aufbau in Zukunft bedeutende Beiträge für die moderne nukleare Astrophysik leisten und ist darüber hinaus beispielsweise auch relevant für die Untersuchung von Doppel-Betazerfällen oder die Suche nach dunkler Materie. Der präsentierte Aufbau ist nun der Sensitivste seiner Art in Deutschland und gehört zu den Sensitivsten weltweit

    Primordial nuclides and low-level counting at Felsenkeller

    Get PDF
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its cross- section in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide

    The new Felsenkeller 5 MV underground accelerator

    Full text link
    The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3He({\alpha},{\gamma})7Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now well-studied pp, 7Be, and 8B solar neutrinos. The not yet measured flux of 13N, 15O, and 17F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14N(p,{\gamma})15O reaction and in emission profile by the 12C(p,{\gamma})13N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12C({\alpha},{\gamma})16O reaction. In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator. The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from {\gamma}-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50{\mu}A, beams of 1H+, 4He+ , and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of the 5th International Solar Neutrino Conference, Dresden/Germany, 11-14 June 2018, to appear on World Scientific -- updated version (Figure 2 and relevant discussion updated, co-author A. Domula added

    Primordial nuclides and low-level counting at Felsenkeller

    No full text
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its crosssection in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide.Innerhalb der Kosmologie gibt es zwei völlig unabhängige Ansätze, die gemeinsam die Präzision in diesem Gebiet weiter vorantreiben können: Astronomische Beobachtungen der primordialen Elementhäufigkeiten und die detaillierte Vermessung des kosmischen Mikrowellenhintergrunds. Dieses Vorhaben wird derzeit allerdings noch durch die vergleichsweise große Unsicherheit des kernphysikalischen Inputs verhindert, vor allem bedingt durch das limitierte Verständnis der 2H(p,γ)3He-Reaktion. Eine präzise Vermessung dieser Reaktion ist sowohl für die Präzisionsdaten zur primordialen Nukleosynthese erforderlich, als auch für die damit einhergehende unabhängige Bestimmung der kosmologischen Baryonendichte. Des Weiteren ist unsere Sonne ein exzellent geeignetes Objekt, um unser theoretisches Verständnis über die Physik von Sternen mit experimentellen Messungen abgleichen zu können. Während wir heutzutage in der Lage sind, solare Neutrinos in Echtzeit auf der Erde messen können, mangelt es noch an der theoretischen Vorhersagekraft von solaren Neutrinoflüssen. Auch hier ist die Präzision (erneut) begrenzt durch das limitierte Verständnis der beteiligten Kernreaktionen, vor allem bedingt durch mangelnde Kenntnis über die 3He(α,γ)7Be-Reaktion. Die vorliegende Arbeit beleuchtet diese zwei Kernreaktionen, die beide unser Verständnis des Universums auf verschiedene Weise einschränken. Während sich die Untersuchung der 2H(p,γ)3He-Reaktion auf die Bestimmung ihres Wirkungsquerschnitts in der Nähe des Gamow-Fensters für die Urknall-Nukleosynthese konzentriert, ist das Hauptanliegen für die 3He(α,γ)7Be-Reaktion eine Messung der Winkelverteilung der dabei emittierten γ-Strahlung bei astrophysikalisch relevanten Energien. Darüber hinaus wird über die Installation eines Messaufbaus zur Untersuchung niedriger Aktivitäten berichtet, das sich durch seine äußerst geringe Untergrundzählrate auszeichnet. Bedingt durch seine hohe Sensitivität kann dieser Aufbau in Zukunft bedeutende Beiträge für die moderne nukleare Astrophysik leisten und ist darüber hinaus beispielsweise auch relevant für die Untersuchung von Doppel-Betazerfällen oder die Suche nach dunkler Materie. Der präsentierte Aufbau ist nun der Sensitivste seiner Art in Deutschland und gehört zu den Sensitivsten weltweit

    Primordial nuclides and low-level counting at Felsenkeller

    No full text
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its cross- section in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide

    Primordial nuclides and low-level counting at Felsenkeller

    No full text
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its crosssection in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide.Innerhalb der Kosmologie gibt es zwei völlig unabhängige Ansätze, die gemeinsam die Präzision in diesem Gebiet weiter vorantreiben können: Astronomische Beobachtungen der primordialen Elementhäufigkeiten und die detaillierte Vermessung des kosmischen Mikrowellenhintergrunds. Dieses Vorhaben wird derzeit allerdings noch durch die vergleichsweise große Unsicherheit des kernphysikalischen Inputs verhindert, vor allem bedingt durch das limitierte Verständnis der 2H(p,γ)3He-Reaktion. Eine präzise Vermessung dieser Reaktion ist sowohl für die Präzisionsdaten zur primordialen Nukleosynthese erforderlich, als auch für die damit einhergehende unabhängige Bestimmung der kosmologischen Baryonendichte. Des Weiteren ist unsere Sonne ein exzellent geeignetes Objekt, um unser theoretisches Verständnis über die Physik von Sternen mit experimentellen Messungen abgleichen zu können. Während wir heutzutage in der Lage sind, solare Neutrinos in Echtzeit auf der Erde messen können, mangelt es noch an der theoretischen Vorhersagekraft von solaren Neutrinoflüssen. Auch hier ist die Präzision (erneut) begrenzt durch das limitierte Verständnis der beteiligten Kernreaktionen, vor allem bedingt durch mangelnde Kenntnis über die 3He(α,γ)7Be-Reaktion. Die vorliegende Arbeit beleuchtet diese zwei Kernreaktionen, die beide unser Verständnis des Universums auf verschiedene Weise einschränken. Während sich die Untersuchung der 2H(p,γ)3He-Reaktion auf die Bestimmung ihres Wirkungsquerschnitts in der Nähe des Gamow-Fensters für die Urknall-Nukleosynthese konzentriert, ist das Hauptanliegen für die 3He(α,γ)7Be-Reaktion eine Messung der Winkelverteilung der dabei emittierten γ-Strahlung bei astrophysikalisch relevanten Energien. Darüber hinaus wird über die Installation eines Messaufbaus zur Untersuchung niedriger Aktivitäten berichtet, das sich durch seine äußerst geringe Untergrundzählrate auszeichnet. Bedingt durch seine hohe Sensitivität kann dieser Aufbau in Zukunft bedeutende Beiträge für die moderne nukleare Astrophysik leisten und ist darüber hinaus beispielsweise auch relevant für die Untersuchung von Doppel-Betazerfällen oder die Suche nach dunkler Materie. Der präsentierte Aufbau ist nun der Sensitivste seiner Art in Deutschland und gehört zu den Sensitivsten weltweit

    Primordial nuclides and low-level counting at Felsenkeller

    No full text
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its cross- section in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide

    Systematics of log ftft values for ββ-, and EC/ββ+ transitions

    No full text
    International audienceThis work is an update of the 1998 publication by B. Singh et al. [1] and reviews the log ft values for all the known β-decay branches (β-, β+/EC). Furthermore, an update of all Q-values (from AME2020 [2]), as well as a recalculation of all the log ft values (through BetaShape code [3, 4]) has been conducted using relevant data in the ENSDF database, as well as in newer literature. Only those cases, where the beta transition occurs between levels of single assignments of spins and parities have been considered in this review. Weak β branches of <1% intensity in complex decay schemes have generally been omitted. Out of a total of 26 318 β transitions extracted from the ENSDF database and current literature, data for only 4 039 β transitions survived the filtering criteria in the present review. The log ft values in β decay, spanning about 21 orders of magnitude, have been classified into allowed and forbidden categories according to the classification scheme of Konopinski [5]. All log ft values have been deduced using the BetaShape code with new developments presented in this study. A very few number of log ft values for very low-energy beta transitions (<5 keV) survived the cut criteria and are briefly discussed in terms of atomic overlap corrections. Also tabulated and briefly discussed are seven superallowed cases with ΔT=0, Tz_z (parent)=-2, while a known case for 28^{28}S to 28^{28}P has been omitted as reliable EC/β+ feeding to the analog state in 28^{28}P cannot be assigned due to lack of adequate experimental and detailed data for this decay. Centroid, width, minimum and maximum values for each category have been deduced. Uncertainties have been estimated and are also given. For literature coverage in the present review, see discussion in text

    Background in γ-ray detectors and carbon beam tests in the Felsenkeller shallow-underground accelerator laboratory

    No full text
    The relevant interaction energies for astrophysical radiative capture reactions are very low, much below the repulsive Coulomb barrier. This leads to low cross sections, low counting rates in γ-ray detectors, and therefore the need to perform such experiments at ion accelerators placed in underground settings, shielded from cosmic rays. Here, the feasibility of such experiments in the new shallow-underground accelerator laboratory in tunnels VIII and IX of the Felsenkeller site in Dresden, Germany, is evaluated. To this end, the no-beam background in three different types of germanium detectors, i.e. a Euroball/Miniball triple cluster and two large monolithic detectors, is measured over periods of 26–66 days. The cosmic-ray induced background is found to be reduced by a factor of 500–2400, by the combined effects of, first, the 140 meters water equivalent overburden attenuating the cosmic muon flux by a factor of 40, and second, scintillation veto detectors gating out most of the remaining muon-induced effects. The new background data are compared to spectra taken with the same detectors at the Earth’s surface and at other underground sites. Subsequently, the beam intensity from the cesium sputter ion source installed in Felsenkeller has been studied over periods of several hours. Based on the background and beam intensity data reported here, for the example of the 12C(α,γ)16O reaction it is shown that highly sensitive experiments will be possible

    Measurement of the 16^{16}O(n, α)13^{13}C cross-section using a Double Frisch Grid Ionization Chamber

    No full text
    International audienceThe 16^{16}O(n, α)13^{13}C reaction was proposed to be measured at the neutron time-of-flight (n_TOF) facilityof CERN. To this purpose, a Double Frisch Grid Ionization Chamber (DFGIC) containing the oxygen atoms asa component in the counting gas coupled with a switch device in order to prevent the charge collection fromthe so-called γ-flash has been developed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in Germany.The first 16^{16}O(n, α)13^{13}C measurement without seeing the charge of the γ-flash at n_TOF has been performed inNovember 2018. After the electronics did not suffer from the γ-flash any more, another huge charge collectionwas discovered. Due to the high instantaneous flux at the n_TOF facility [1] the amount of that induced chargefrom neutron induced background reactions was piling up so much that the recognition of 16^{16}O(n, α)13^{13}C reactionsfrom that background was very difficult. For that reason another 16^{16}O(n, α)13^{13}C measurement at the time-of-flightfacility nELBE at HZDR which has a low instantaneous flux [2], has been performed in April 2019. Both measurements from n_TOF and nELBE will be presented here
    corecore