7,775 research outputs found

    Alloy ionizer fabrication Summary report

    Get PDF
    Fabrication methods of porous refractory ionizers from spherical powders of iridium-tungsten, and rhenium-tungste

    Shortcomings of the Bond Orientational Order Parameters for the Analysis of Disordered Particulate Matter

    Get PDF
    Local structure characterization with the bond-orientational order parameters q4, q6, ... introduced by Steinhardt et al. has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions and cluster formation. Here we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of neighboring spheres NN(p) around a given central particle p; we show that procedure to select the spheres constituting the neighborhood NN(p) can have greater influence on both the numerical values and qualitative trend of ql than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by ql, leads to a lack of robustness of the ql as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics ql'. These ql' are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [Europhys. Lett. 90, 34001 (2010); Phys. Rev. E. 85, 030301 (2012)]

    Panel I: Accountability of the Media in Investigations

    Get PDF

    Space-resolved dynamics of a tracer in a disordered solid

    Full text link
    The dynamics of a tracer particle in a glassy matrix of obstacles displays slow complex transport as the free volume approaches a critical value and the void space falls apart. We investigate the emerging subdiffusive motion of the test particle by extensive molecular dynamics simulations and characterize the spatio-temporal transport in terms of two-time correlation functions, including the time-dependent diffusion coefficient as well as the wavenumber-dependent intermediate scattering function. We rationalize our findings within the framework of critical phenomena and compare our data to a dynamic scaling theory.Comment: 10 pages, 7 figures, submitted to Journal of Non-Crystalline Solid

    Group Theory of Chiral Photonic Crystals with 4-fold Symmetry: Band Structure and S-Parameters of Eight-Fold Intergrown Gyroid Nets

    Full text link
    The Single Gyroid, or srs, nanostructure has attracted interest as a circular-polarisation sensitive photonic material. We develop a group theoretical and scattering matrix method, applicable to any photonic crystal with symmetry I432, to demonstrate the remarkable chiral-optical properties of a generalised structure called 8-srs, obtained by intergrowth of eight equal-handed srs nets. Exploiting the presence of four-fold rotations, Bloch modes corresponding to the irreducible representations E- and E+ are identified as the sole and non-interacting transmission channels for right- and left-circularly polarised light, respectively. For plane waves incident on a finite slab of the 8-srs, the reflection rates for both circular polarisations are identical for all frequencies and transmission rates are identical up to a critical frequency below which scattering in the far field is restricted to zero grating order. Simulations show the optical activity of the lossless dielectric 8-srs to be large, comparable to metallic metamaterials, demonstrating its potential as a nanofabricated photonic material

    Group Theory of Circular-Polarization Effects in Chiral Photonic Crystals with Four-Fold Rotation Axes, Applied to the Eight-Fold Intergrowth of Gyroid Nets

    Full text link
    We use group or representation theory and scattering matrix calculations to derive analytical results for the band structure topology and the scattering parameters, applicable to any chiral photonic crystal with body-centered cubic symmetry I432 for circularly-polarised incident light. We demonstrate in particular that all bands along the cubic [100] direction can be identified with the irreducible representations E+/-,A and B of the C4 point group. E+ and E- modes represent the only transmission channels for plane waves with wave vector along the ? line, and can be identified as non-interacting transmission channels for right- (E-) and left-circularly polarised light (E+), respectively. Scattering matrix calculations provide explicit relationships for the transmission and reflectance amplitudes through a finite slab which guarantee equal transmission rates for both polarisations and vanishing ellipticity below a critical frequency, yet allowing for finite rotation of the polarisation plane. All results are verified numerically for the so-called 8-srs geometry, consisting of eight interwoven equal-handed dielectric Gyroid networks embedded in air. The combination of vanishing losses, vanishing ellipticity, near-perfect transmission and optical activity comparable to that of metallic meta-materials makes this geometry an attractive design for nanofabricated photonic materials

    Pomelo, a tool for computing Generic Set Voronoi Diagrams of Aspherical Particles of Arbitrary Shape

    Full text link
    We describe the development of a new software tool, called "Pomelo", for the calculation of Set Voronoi diagrams. Voronoi diagrams are a spatial partition of the space around the particles into separate Voronoi cells, e.g. applicable to granular materials. A generalization of the conventional Voronoi diagram for points or monodisperse spheres is the Set Voronoi diagram, also known as navigational map or tessellation by zone of influence. In this construction, a Set Voronoi cell contains the volume that is closer to the surface of one particle than to the surface of any other particle. This is required for aspherical or polydisperse systems. Pomelo is designed to be easy to use and as generic as possible. It directly supports common particle shapes and offers a generic mode, which allows to deal with any type of particles that can be described mathematically. Pomelo can create output in different standard formats, which allows direct visualization and further processing. Finally, we describe three applications of the Set Voronoi code in granular and soft matter physics, namely the problem of packings of ellipsoidal particles with varying degrees of particle-particle friction, mechanical stable packings of tetrahedra and a model for liquid crystal systems of particles with shapes reminiscent of pearsComment: 4 pages, 9 figures, Submitted to Powders and Grains 201
    • …
    corecore