862 research outputs found

    Science is perception: what can our sense of smell tell us about ourselves and the world around us?

    Get PDF
    Human sensory processes are well understood: hearing, seeing, perhaps even tasting and touch—but we do not understand smell—the elusive sense. That is, for the others we know what stimuli causes what response, and why and how. These fundamental questions are not answered within the sphere of smell science; we do not know what it is about a molecule that … smells. I report, here, the status quo theories for olfaction, highlighting what we do not know, and explaining why dismissing the perception of the input as ‘too subjective’ acts as a roadblock not conducive to scientific inquiry. I outline the current and new theory that conjectures a mechanism for signal transduction based on quantum mechanical phenomena, dubbed the ‘swipe card’, which is perhaps controversial but feasible. I show that such lines of thinking may answer some questions, or at least pose the right questions. Most importantly, I draw links and comparisons as to how better understanding of how small (10’s of atoms) molecules can interact so specially with large (10 000’s of atoms) proteins in a way that is so integral to healthy living. Repercussions of this work are not just important in understanding a basic scientific tool used by us all, but often taken for granted, it is also a step closer to understanding generic mechanisms between drug and receptor, for example

    Current and noise expressions for radio-frequency single-electron transistors

    Full text link
    We derive self-consistent expressions of current and noise for single-electron transistors driven by time-dependent perturbations. We take into account effects of the electrical environment, higher-order co-tunneling, and time-dependent perturbations under the two-charged state approximation using the Schwinger-Kedysh approach combined with the generating functional technique. For a given generating functional, we derive exact expressions for tunneling currents and noises and present the forms in terms of transport coefficients. It is also shown that in the adiabatic limit our results encompass previous formulas. In order to reveal effects missing in static cases, we apply the derived results to simulate realized radio-frequency single-electron transistor. It is found that photon-assisted tunneling affects largely the performance of the single-electron transistor by enhancing both responses to gate charges and current noises. On various tunneling resistances and frequencies of microwaves, the dependence of the charge sensitivity is also discussed.Comment: 18 pages, 9 figure

    Comparative analysis of viral shedding in pediatric and adult subjects with central nervous system-associated enterovirus infections from 2013 to 2015 in Switzerland.

    Get PDF
    Several enterovirus (EV) genotypes can result in aseptic meningitis, but their routes of access to the central nervous system remain to be elucidated and may differ between the pediatric and adult populations. To assess the pattern of viral shedding in pediatric and adult subjects with acute EV meningitis and to generate EV surveillance data for Switzerland. All pediatric and adult subjects admitted to the University Hospitals of Geneva with a diagnosis of EV meningitis between 2013 and 2015 were enrolled. A quantitative EV real-time reverse transcriptase (rRT)-PCR was performed on the cerebrospinal fluid (CSF), blood, stool, urine and respiratory specimens to assess viral shedding and provide a comparative analysis of pediatric and adult populations. EV genotyping was systematically performed. EV positivity rates differed significantly between pediatric and adult subjects; 62.5% of pediatric cases (no adult case) were EV-positive in stool and blood for subjects for whom these samples were all collected. Similarly, the EV viral load in blood was significantly higher in pediatric subjects. Blood C-reactive protein levels were lower and the number of leucocytes/mm3 in the CSF were higher in non-viremic than in viremic pediatric subjects, respectively. A greater diversity of EV genotypes was observed in pediatric cases, with a predominance of echovirus 30 in children ≥3 years old and adults. In contrast to adults, EV-disseminated infections are predominant in pediatric subjects and show different patterns of EV viral shedding. This observation may be useful for clinicians and contribute to modify current practices of patient care

    Could humans recognize odor by phonon assisted tunneling?

    Get PDF
    Our sense of smell relies on sensitive, selective atomic-scale processes that are initiated when a scent molecule meets specific receptors in the nose. However, the physical mechanisms of detection are not clear. While odorant shape and size are important, experiment indicates these are insufficient. One novel proposal suggests inelastic electron tunneling from a donor to an acceptor mediated by the odorant actuates a receptor, and provides critical discrimination. We test the physical viability of this mechanism using a simple but general model. Using values of key parameters in line with those for other biomolecular systems, we find the proposed mechanism is consistent both with the underlying physics and with observed features of smell, provided the receptor has certain general properties. This mechanism suggests a distinct paradigm for selective molecular interactions at receptors (the swipe card model): recognition and actuation involve size and shape, but also exploit other processes.Comment: 10 pages, 1 figur

    Complexities of Molecular Identification of γ-herpesviruses: Lessons from MCFV

    Get PDF
    The Herpesviridae family is subdivided into three subfamilies, namely α-herpersvirinae, β-herpesvirinae and γ-herpesvirinae. All members of the family are characterized by a common structure consisting of a large linear double-stranded DNA genetic core packaged into a proteic icosahedral capsid and further enclosed in a phospholipidic bilayer envelope of cellular origin. Herpesviruses are characterized, on one side, by a high stability of the genome during virus replication, however, on the other side by a high capability to change rapidly in response to natural evolutionary selecting pressure. Therefore, there is a continuous emergence and establishment of new viruses. In this contest γ-herpesviruses, whose contribution to disease outbreaks in wildlife population has often been underestimated, pose a serious problem due to their ability to cross species barriers, infect new hosts and give rise to newly emerged viruses or virus variants in reservoirs. The problem is exacerbated by the absence of vaccines and effective treatments, such as for Malignant Catarrhal Fever (MCF) in cattle or MCF-like diseases, caused by the Malignant Catarrhal Fever Viruses (MCFVs). MCFV can infect both livestock and wild animals sporadically, however when it does, it can cause clinical disease with important welfare implications, dramatic pathological changes and often has death as outcome. Due to the inability to isolate the majority of the γ-herpesviruses in vitro, their detection and characterization necessarily involve molecular methodologies aimed at diagnosing, identifying and resolving their phylogenetic origins and the evolutionary relationship with the host species. This information is ultimately necessary to improve the control of the disease spread, and to better identify the source of outbreaks, which can be seriously detrimental to zoological collections, especially for endangered species. This review provides an overview of the currently available methodologies applied for identification and characterization of MCFVs, critically describes benefits and disadvantages of these, recognises the gaps to be addressed and identifies future diagnostic opportunities

    The effects of precipitation manipulation on carbohydrate dynamics and mortality in a piñon-juniper woodland

    Get PDF
    Drought-induced forest mortality is an increasing global problem with far-reaching consequences, yet mortality mechanisms remain poorly understood. Depletion of non-structural carbohydrate (NSC) stores has been implicated as a major factor in drought-induced mortality, but experimental field tests are rare. We conducted an ecosystem-scale precipitation manipulation experiment and evaluated leaf and twig NSC dynamics of two co-occurring conifers with different water regulation strategies; the relatively drought-averse piñon pine (Pinus edulis) and relatively drought-tolerant oneseed juniper (Juniperus monosperma). Experimental drought caused decreased leaf starch in dying trees of both species and increased allocation to glucose and fructose in juniper, consistent with osmoregulation requirements. For both species, average leaf starch content between drought treatment initiation and mortality was a good predictor (R2 = 0.77) of survival duration. These results, along with observations of drought-induced reductions to photosynthesis and growth, implicate carbon starvation as an important process during mortality of these two conifer species

    Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    Get PDF
    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data
    corecore